Conformal manifolds: ODEs from OPEs

Abstract

The existence of an exactly marginal deformation in a conformal field theory is very special, but it is not well understood how this is reflected in the allowed dimensions and OPE coefficients of local operators. To shed light on this question, we compute perturbative corrections to several observables in an abstract CFT, starting with the beta function. This yields a sum rule that the theory must obey in order to be part of a conformal manifold. The set of constraints relating CFT data at different values of the coupling can in principle be written as a dynamical system that allows one to flow arbitrarily far. We begin the analysis of it by finding a simple form for the differential equations when the spacetime and theory space are both one-dimensional. A useful feature we can immediately observe is that our system makes it very difficult for level crossing to occur.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    C. Behan, L. Rastelli, S. Rychkov and B. Zan, A scaling theory for the long-range to short-range crossover and an infrared duality, J. Phys. A 50 (2017) 354002 [arXiv:1703.05325] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  2. [2]

    C. Behan, L. Rastelli, S. Rychkov and B. Zan, Long-range critical exponents near the short-range crossover, Phys. Rev. Lett. 118 (2017) 241601 [arXiv:1703.03430] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  3. [3]

    R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP 12 (2008) 031 [arXiv:0807.0004] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  4. [4]

    S.J. Gates Jr, M.T. Grisaru, M. Rocek and W. Siegel, Superspace, or one thousand and one lessons in supersymmetry, Front. Phys. 58 (1983) 1 [hep-th/0108200] [INSPIRE].

    MATH  Google Scholar 

  5. [5]

    N. Seiberg, Supersymmetry and non-peturbative beta functions, Phys. Lett. B 206 (1988) 75.

    ADS  MathSciNet  Article  Google Scholar 

  6. [6]

    R.G. Leigh and M.J. Strassler, Exactly marginal operators and duality in four-dimensional N = 1 supersymmetric gauge theory, Nucl. Phys. B 447 (1995) 95 [hep-th/9503121] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  7. [7]

    M.J. Strassler, On renormalization group flows and exactly marginal operators in three-dimensions, hep-th/9810223 [INSPIRE].

  8. [8]

    C.-M. Chang and X. Yin, Families of Conformal Fixed Points of N = 2 Chern-Simons-Matter Theories, JHEP 05 (2010) 108 [arXiv:1002.0568] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  9. [9]

    D. Green, Z. Komargodski, N. Seiberg, Y. Tachikawa and B. Wecht, Exactly marginal deformations and global symmetries, JHEP 06 (2010) 106 [arXiv:1005.3545] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  10. [10]

    J. Gomis, P.-S. Hsin, Z. Komargodski, A. Schwimmer, N. Seiberg and S. Theisen, Anomalies, Conformal Manifolds and Spheres, JHEP 03 (2016) 022 [arXiv:1509.08511] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  11. [11]

    J. Gomis, Z. Komargodski, H. Ooguri, N. Seiberg and Y. Wang, Shortening Anomalies in Supersymmetric Theories, JHEP 01 (2017) 067 [arXiv:1611.03101] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  12. [12]

    M. Buican and T. Nishinaka, Compact Conformal Manifolds, JHEP 01 (2015) 112 [arXiv:1410.3006] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  13. [13]

    C. Cordova, T.T. Dumitrescu and K. Intriligator, Multiplets of Superconformal Symmetry in Diverse Dimensions, arXiv:1612.00809 [INSPIRE].

  14. [14]

    K. Ranganathan, H. Sonoda and B. Zwiebach, Connections on the state space over conformal field theories, Nucl. Phys. B 414 (1994) 405 [hep-th/9304053] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  15. [15]

    M. Baggio, V. Niarchos and K. Papadodimas, Aspects of Berry phase in QFT, JHEP 04 (2017) 062 [arXiv:1701.05587] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  16. [16]

    D. Li, D. Meltzer and D. Poland, Conformal Collider Physics from the Lightcone Bootstrap, JHEP 02 (2016) 143 [arXiv:1511.08025] [INSPIRE].

    ADS  Article  Google Scholar 

  17. [17]

    T. Hartman, S. Jain and S. Kundu, A New Spin on Causality Constraints, JHEP 10 (2016) 141 [arXiv:1601.07904] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  18. [18]

    D.M. Hofman, D. Li, D. Meltzer, D. Poland and F. Rejon-Barrera, A proof of the conformal collider bounds, JHEP 06 (2016) 011 [arXiv:1603.03711] [INSPIRE].

    MATH  Google Scholar 

  19. [19]

    D. Li, D. Meltzer and D. Poland, Conformal Bootstrap in the Regge Limit, JHEP 12 (2017) 013 [arXiv:1705.03453] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  20. [20]

    L. Iliesiu, F. Kos, D. Poland, S.S. Pufu, D. Simmons-Duffin and R. Yacoby, Bootstrapping 3D Fermions, JHEP 03 (2016) 120 [arXiv:1508.00012] [INSPIRE].

    ADS  Article  Google Scholar 

  21. [21]

    L. Iliesiu, F. Kos, D. Poland, S.S. Pufu and D. Simmons-Duffin, Bootstrapping 3D Fermions with Global Symmetries, JHEP 01 (2018) 036 [arXiv:1705.03484] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  22. [22]

    A. Dymarsky, J. Penedones, E. Trevisani and A. Vichi, Charting the space of 3D CFTs with a continuous global symmetry, arXiv:1705.04278 [INSPIRE].

  23. [23]

    A. Dymarsky, F. Kos, P. Kravchuk, D. Poland and D. Simmons-Duffin, The 3d Stress-Tensor Bootstrap, JHEP 02 (2018) 164 [arXiv:1708.05718] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  24. [24]

    S. El-Showk and M.F. Paulos, Extremal bootstrapping: go with the flow, arXiv:1605.08087 [INSPIRE].

  25. [25]

    V. Bashmakov, M. Bertolini and H. Raj, On non-supersymmetric conformal manifolds: field theory and holography, JHEP 11 (2017) 167 [arXiv:1709.01749] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  26. [26]

    S. Hollands, Operator product expansion algebra, at Local Quantum Physics and beyond — in memorian Rudolf Haag, Hamburg Germany (2016).

  27. [27]

    S. Hollands, Operator product expansion algebra, at Wolfhard Zimmerman memorial symposium, Munich Germany (2017).

  28. [28]

    A.B. Zamolodchikov, Renormalization Group and Perturbation Theory Near Fixed Points in Two-Dimensional Field Theory, Sov. J. Nucl. Phys. 46 (1987) 1090 [INSPIRE].

    Google Scholar 

  29. [29]

    J.L. Cardy, Scaling and renormalization in statistical physics, Cambridge University Press, Cambridge U.K. (1996).

    Google Scholar 

  30. [30]

    D. Berenstein and A. Miller, Conformal perturbation theory, dimensional regularization and AdS/CFT correspondence, Phys. Rev. D 90 (2014) 086011 [arXiv:1406.4142] [INSPIRE].

    ADS  Google Scholar 

  31. [31]

    D. Berenstein and A. Miller, Logarithmic enhancements in conformal perturbation theory and their real time interpretation, arXiv:1607.01922 [INSPIRE].

  32. [32]

    Z. Komargodski and D. Simmons-Duffin, The Random-Bond Ising Model in 2.01 and 3 Dimensions, J. Phys. A 50 (2017) 154001 [arXiv:1603.04444] [INSPIRE].

  33. [33]

    A.L. Fitzpatrick, J. Kaplan, D. Poland and D. Simmons-Duffin, The Analytic Bootstrap and AdS Superhorizon Locality, JHEP 12 (2013) 004 [arXiv:1212.3616] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  34. [34]

    Z. Komargodski and A. Zhiboedov, Convexity and Liberation at Large Spin, JHEP 11 (2013) 140 [arXiv:1212.4103] [INSPIRE].

    ADS  Article  Google Scholar 

  35. [35]

    F. Kos, D. Poland and D. Simmons-Duffin, Bootstrapping the O(N) vector models, JHEP 06 (2014) 091 [arXiv:1307.6856] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  36. [36]

    M. Hogervorst and S. Rychkov, Radial Coordinates for Conformal Blocks, Phys. Rev. D 87 (2013) 106004 [arXiv:1303.1111] [INSPIRE].

    ADS  Google Scholar 

  37. [37]

    J.L. Cardy, Continuously varrying exponents and the value of the central charge, J. Phys. A 20 (1987) L891.

    ADS  Google Scholar 

  38. [38]

    N.J.A. Sloane, The online encyclopedia of integer sequences, http://oeis.org.

  39. [39]

    M. Hogervorst and B.C. van Rees, Crossing symmetry in alpha space, JHEP 11 (2017) 193 [arXiv:1702.08471] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  40. [40]

    Y. Tachikawa, N = 2 supersymmetric dynamics for pedestrians Lecture Notes Phys. 890 (2014) 1 [arXiv:1312.2684] [INSPIRE].

  41. [41]

    Z.U. Khandker, D. Li, D. Poland and D. Simmons-Duffin, \( \mathcal{N} \) = 1 superconformal blocks for general scalar operators, JHEP 08 (2014) 049 [arXiv:1404.5300] [INSPIRE].

    ADS  Article  Google Scholar 

  42. [42]

    Z. Li and N. Su, The Most General 4d \( \mathcal{N} \) = 1 Superconformal Blocks for Scalar Operators, JHEP 05 (2016) 163 [arXiv:1602.07097] [INSPIRE].

    ADS  Article  Google Scholar 

  43. [43]

    M. Cornagliotto, M. Lemos and V. Schomerus, Long Multiplet Bootstrap, JHEP 10 (2017) 119 [arXiv:1702.05101] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  44. [44]

    F.A. Dolan and H. Osborn, Conformal Partial Waves: Further Mathematical Results, arXiv:1108.6194 [INSPIRE].

  45. [45]

    R. Jackiw and S.Y. Pi, Conformal Blocks for the 4-Point Function in Conformal Quantum Mechanics, Phys. Rev. D 86 (2012) 045017 [Erratum ibid. D 86 (2012) 089905] [arXiv:1205.0443] [INSPIRE].

  46. [46]

    D. Mazac, Analytic bounds and emergence of AdS 2 physics from the conformal bootstrap, JHEP 04 (2017) 146 [arXiv:1611.10060] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  47. [47]

    K. Bulycheva, A note on the SYK model with complex fermions, JHEP 12 (2017) 069 [arXiv:1706.07411] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  48. [48]

    C. Beem, L. Rastelli and B.C. van Rees, The \( \mathcal{N} \) = 4 Superconformal Bootstrap, Phys. Rev. Lett. 111 (2013) 071601 [arXiv:1304.1803] [INSPIRE].

    ADS  Article  Google Scholar 

  49. [49]

    G.P. Korchemsky, On level crossing in conformal field theories, JHEP 03 (2016) 212 [arXiv:1512.05362] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  50. [50]

    P. Bouwknegt and K. Schoutens, W symmetry in conformal field theory, Phys. Rept. 223 (1993) 183 [hep-th/9210010] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  51. [51]

    S. Förste and D. Roggenkamp, Current current deformations of conformal field theories and WZW models, JHEP 05 (2003) 071 [hep-th/0304234] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  52. [52]

    K. Sen and A. Sinha, On critical exponents without Feynman diagrams, J. Phys. A 49 (2016) 445401 [arXiv:1510.07770] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  53. [53]

    S. Pasterski and S.-H. Shao, Conformal basis for flat space amplitudes, Phys. Rev. D 96 (2017) 065022 [arXiv:1705.01027] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  54. [54]

    W. Li, Inverse Bootstrapping Conformal Field Theories, JHEP 01 (2018) 077 [arXiv:1706.04054] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  55. [55]

    R. Gopakumar, A. Kaviraj, K. Sen and A. Sinha, Conformal Bootstrap in Mellin Space, Phys. Rev. Lett. 118 (2017) 081601 [arXiv:1609.00572] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  56. [56]

    R. Gopakumar, A. Kaviraj, K. Sen and A. Sinha, A Mellin space approach to the conformal bootstrap, JHEP 05 (2017) 027 [arXiv:1611.08407] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  57. [57]

    P. Suchanek, Elliptic recursion for 4-point superconformal blocks and bootstrap in N = 1 SLFT, JHEP 02 (2011) 090 [arXiv:1012.2974] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  58. [58]

    Y.-H. Lin, S.-H. Shao, D. Simmons-Duffin, Y. Wang and X. Yin, \( \mathcal{N} \) = 4 superconformal bootstrap of the K3 CFT, JHEP 05 (2017) 126 [arXiv:1511.04065] [INSPIRE].

  59. [59]

    V. Mitev and E. Pomoni, 2D CFT blocks for the 4D class \( {\mathcal{S}}_k \) theories, JHEP 08 (2017) 009 [arXiv:1703.00736] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  60. [60]

    R. Poghossian, Recurrence relations for the \( {\mathcal{W}}_3 \) conformal blocks and \( \mathcal{N} \) = 2 SYM partition functions, JHEP 11 (2017) 053 [Erratum ibid. 1801 (2018) 088] [arXiv:1705.00629] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Connor Behan.

Additional information

ArXiv ePrint: 1709.03967

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Behan, C. Conformal manifolds: ODEs from OPEs. J. High Energ. Phys. 2018, 127 (2018). https://doi.org/10.1007/JHEP03(2018)127

Download citation

Keywords

  • Conformal Field Theory
  • Field Theories in Lower Dimensions
  • Conformal and W Symmetry
  • Nonperturbative Effects