A.M. Polyakov, Fermi-Bose Transmutations Induced by Gauge Fields, Mod. Phys. Lett.
A 3 (1988) 325 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
N. Shaji, R. Shankar and M. Sivakumar, On Bose-fermi Equivalence in a U(1) Gauge Theory With Chern-Simons Action, Mod. Phys. Lett.
A 5 (1990) 593 [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
E.H. Fradkin and F.A. Schaposnik, The fermion-boson mapping in three-dimensional quantum field theory, Phys. Lett.
B 338 (1994) 253 [hep-th/9407182] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
W. Chen, M.P.A. Fisher and Y.-S. Wu, Mott transition in an anyon gas, Phys. Rev.
B 48 (1993) 13749 [cond-mat/9301037] [INSPIRE].
O. Aharony, G. Gur-Ari and R. Yacoby, d = 3 Bosonic Vector Models Coupled to Chern-Simons Gauge Theories, JHEP
03 (2012) 037 [arXiv:1110.4382] [INSPIRE].
S. Giombi, S. Minwalla, S. Prakash, S.P. Trivedi, S.R. Wadia and X. Yin, Chern-Simons Theory with Vector Fermion Matter, Eur. Phys. J.
C 72 (2012) 2112 [arXiv:1110.4386] [INSPIRE].
ADS
Article
Google Scholar
O. Aharony, Baryons, monopoles and dualities in Chern-Simons-matter theories, JHEP
02 (2016) 093 [arXiv:1512.00161] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
O. Aharony, G. Gur-Ari and R. Yacoby, Correlation Functions of Large N Chern-Simons-Matter Theories and Bosonization in Three Dimensions, JHEP
12 (2012) 028 [arXiv:1207.4593] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
A. Karch and D. Tong, Particle-Vortex Duality from 3d Bosonization, Phys. Rev.
X 6 (2016) 031043 [arXiv:1606.01893] [INSPIRE].
Article
Google Scholar
N. Seiberg, T. Senthil, C. Wang and E. Witten, A Duality Web in 2 + 1 Dimensions and Condensed Matter Physics, Annals Phys.
374 (2016) 395 [arXiv:1606.01989] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
J. Murugan and H. Nastase, Particle-vortex duality in topological insulators and superconductors, JHEP
05 (2017) 159 [arXiv:1606.01912] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
J.-Y. Chen, J.H. Son, C. Wang and S. Raghu, Exact Boson-Fermion Duality on a 3D Euclidean Lattice, Phys. Rev. Lett.
120 (2018) 016602 [arXiv:1705.05841] [INSPIRE].
ADS
Article
Google Scholar
A. Karch, B. Robinson and D. Tong, More Abelian Dualities in 2 + 1 Dimensions, JHEP
01 (2017) 017 [arXiv:1609.04012] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
D. Gaiotto, Boundaries, interfaces and dualities, talk at Natifest, Princeton, September 2016.
M. Atiyah, R. Bott and V.K. Patodi, On the heat equation and the index theorem, Invent. Math.
19 (1973) 279.
ADS
MathSciNet
Article
MATH
Google Scholar
W. Müller, Eta invariants and manifolds with boundary, J. Diff. Geom.
40 (1994) 311.
MathSciNet
Article
MATH
Google Scholar
N. Seiberg and E. Witten, Gapped Boundary Phases of Topological Insulators via Weak Coupling, PTEP
2016 (2016) 12C101 [arXiv:1602.04251] [INSPIRE].
M.A. Metlitski, S-duality of u(1) gauge theory with θ = π on non-orientable manifolds: Applications to topological insulators and superconductors, arXiv:1510.05663 [INSPIRE].
C. Csáki, C. Grojean, J. Hubisz, Y. Shirman and J. Terning, Fermions on an interval: Quark and lepton masses without a Higgs, Phys. Rev.
D 70 (2004) 015012 [hep-ph/0310355] [INSPIRE].
E.H. Fradkin, Field Theories of Condensed Matter Physics, Front. Phys.
82 (2013) 1 [INSPIRE].
MATH
Google Scholar
D.B. Kaplan, A method for simulating chiral fermions on the lattice, Phys. Lett.
B 288 (1992) 342 [hep-lat/9206013] [INSPIRE].
C.G. Callan Jr. and J.A. Harvey, Anomalies and Fermion Zero Modes on Strings and Domain Walls, Nucl. Phys.
B 250 (1985) 427 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
P. Liendo, L. Rastelli and B.C. van Rees, The Bootstrap Program for Boundary CF T
d, JHEP
07 (2013) 113 [arXiv:1210.4258] [INSPIRE].
ADS
Article
MATH
Google Scholar
P.-S. Hsin and N. Seiberg, Level/rank Duality and Chern-Simons-Matter Theories, JHEP
09 (2016) 095 [arXiv:1607.07457] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
D.T. Son, Is the Composite Fermion a Dirac Particle?, Phys. Rev.
X 5 (2015) 031027 [arXiv:1502.03446] [INSPIRE].
Article
Google Scholar
M.A. Metlitski and A. Vishwanath, Particle-vortex duality of two-dimensional Dirac fermion from electric-magnetic duality of three-dimensional topological insulators, Phys. Rev.
B 93 (2016) 245151 [arXiv:1505.05142] [INSPIRE].
ADS
Article
Google Scholar
C. Wang and T. Senthil, Dual Dirac Liquid on the Surface of the Electron Topological Insulator, Phys. Rev.
X 5 (2015) 041031 [arXiv:1505.05141] [INSPIRE].
Article
Google Scholar
M.F.L. Golterman, K. Jansen and D.B. Kaplan, Chern-Simons currents and chiral fermions on the lattice, Phys. Lett.
B 301 (1993) 219 [hep-lat/9209003] [INSPIRE].
K. Jansen and M. Schmaltz, Critical momenta of lattice chiral fermions, Phys. Lett.
B 296 (1992) 374 [hep-lat/9209002] [INSPIRE].
Y. Shamir, Chiral fermions from lattice boundaries, Nucl. Phys.
B 406 (1993) 90 [hep-lat/9303005] [INSPIRE].
S. Sint, On the Schrödinger functional in QCD, Nucl. Phys.
B 421 (1994) 135 [hep-lat/9312079] [INSPIRE].
C. Wang and T. Senthil, Half-filled Landau level, topological insulator surfaces and three-dimensional quantum spin liquids, Phys. Rev.
B 93 (2016) 085110 [arXiv:1507.08290] [INSPIRE].
ADS
Article
Google Scholar
D.F. Mross, J. Alicea and O.I. Motrunich, Symmetry and duality in bosonization of two-dimensional Dirac fermions, Phys. Rev.
X 7 (2017) 041016 [arXiv:1705.01106] [INSPIRE].
Article
Google Scholar
D.F. Mross, J. Alicea and O.I. Motrunich, Explicit derivation of duality between a free Dirac cone and quantum electrodynamics in (2 + 1) dimensions, Phys. Rev. Lett.
117 (2016) 016802 [arXiv:1510.08455] [INSPIRE].
ADS
Article
Google Scholar