R. Bousso and J. Polchinski, Quantization of four form fluxes and dynamical neutralization of the cosmological constant, JHEP
06 (2000) 006 [hep-th/0004134] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
L. Susskind, The Anthropic landscape of string theory, hep-th/0302219 [INSPIRE].
A. Linde, A brief history of the multiverse, Rept. Prog. Phys.
80 (2017) 022001 [arXiv:1512.01203] [INSPIRE].
ADS
Article
Google Scholar
M. Tegmark, What does inflation really predict?, JCAP
04 (2005) 001 [astro-ph/0410281] [INSPIRE].
A. Aazami and R. Easther, Cosmology from random multifield potentials, JCAP
03 (2006) 013 [hep-th/0512050] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
J. Frazer and A.R. Liddle, Exploring a string-like landscape, JCAP
02 (2011) 026 [arXiv:1101.1619] [INSPIRE].
ADS
Article
Google Scholar
D. Battefeld, T. Battefeld and S. Schulz, On the unlikeliness of multi-field inflation: bounded random potentials and our vacuum, JCAP
06 (2012) 034 [arXiv:1203.3941] [INSPIRE].
ADS
Article
Google Scholar
T.C. Bachlechner, D. Marsh, L. McAllister and T. Wrase, Supersymmetric vacua in random supergravity, JHEP
01 (2013) 136 [arXiv:1207.2763] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
I.-S. Yang, Probability of slowroll inflation in the multiverse, Phys. Rev.
D 86 (2012) 103537 [arXiv:1208.3821] [INSPIRE].
ADS
Google Scholar
T.C. Bachlechner, On gaussian random supergravity, JHEP
04 (2014) 054 [arXiv:1401.6187] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
G. Wang and T. Battefeld, Vacuum selection on axionic landscapes, JCAP
04 (2016) 025 [arXiv:1512.04224] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
A. Masoumi and A. Vilenkin, Vacuum statistics and stability in axionic landscapes, JCAP
03 (2016) 054 [arXiv:1601.01662] [INSPIRE].
ADS
Article
Google Scholar
R. Easther, A.H. Guth and A. Masoumi, Counting vacua in random landscapes, arXiv:1612.05224 [INSPIRE].
A. Masoumi, A. Vilenkin and M. Yamada, Inflation in random Gaussian landscapes, JCAP
05 (2017) 053 [arXiv:1612.03960] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
A. Masoumi, A. Vilenkin and M. Yamada, Initial conditions for slow-roll inflation in a random Gaussian landscape, JCAP
07 (2017) 003 [arXiv:1704.06994] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
A. Masoumi, A. Vilenkin and M. Yamada, Inflation in multi-field random Gaussian landscapes, JCAP
12 (2017) 035 [arXiv:1707.03520] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
T. Bjorkmo and M.C.D. Marsh, Manyfield inflation in random potentials, JCAP
02 (2018) 037 [arXiv:1709.10076] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
J.J. Blanco-Pillado, A. Vilenkin and M. Yamada, Inflation in random landscapes with two energy scales, JHEP
02 (2018) 130 [arXiv:1711.00491] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
J.E. Kim, H.P. Nilles and M. Peloso, Completing natural inflation, JCAP
01 (2005) 005 [hep-ph/0409138] [INSPIRE].
S. Dimopoulos, S. Kachru, J. McGreevy and J.G. Wacker, N-flation, JCAP
08 (2008) 003 [hep-th/0507205] [INSPIRE].
ADS
Article
Google Scholar
L. McAllister, E. Silverstein and A. Westphal, Gravity waves and linear inflation from axion monodromy, Phys. Rev.
D 82 (2010) 046003 [arXiv:0808.0706] [INSPIRE].
ADS
Google Scholar
T. Higaki and F. Takahashi, Natural and multi-natural inflation in axion landscape, JHEP
07 (2014) 074 [arXiv:1404.6923] [INSPIRE].
ADS
Article
Google Scholar
T.C. Bachlechner, K. Eckerle, O. Janssen and M. Kleban, Systematics of aligned axions, JHEP
11 (2017) 036 [arXiv:1709.01080] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
A.J. Bray and D.S. Dean, Statistics of critical points of Gaussian fields on large-dimensional spaces, Phys. Rev. Lett.
98 (2007) 150201 [INSPIRE].
ADS
Article
Google Scholar
Y.V. Fyodorov and C. Nadal, Critical behavior of the number of minima of a random landscape at the glass transition point and the Tracy-Widom distribution, Phys. Rev. Lett.
109 (2012) 167203 [arXiv:1207.6790].
ADS
Article
Google Scholar
Y.V. Fyodorov and I. Williams, Replica symmetry breaking condition exposed by random matrix calculation of landscape complexity, J. Stat. Phys.
129 (2007) 1081 [cond-mat/0702601].
F.J. Dyson, A Brownian-motion model for the Eigenvalues of a random matrix, J. Math. Phys.
3 (1962) 1191.
ADS
MathSciNet
Article
MATH
Google Scholar
Y.V. Fyodorov, Complexity of random energy landscapes, glass transition and absolute value of spectral determinant of random matrices, Phys. Rev. Lett.
92 (2004) 240601.
ADS
MathSciNet
Article
MATH
Google Scholar
E.P. Wigner, Characteristic vectors of bordered matrices with infinite dimensions, Ann. Math.
62 (1955) 548.
MathSciNet
Article
MATH
Google Scholar
D.S. Dean and S.N. Majumdar, Large deviations of extreme eigenvalues of random matrices, Phys. Rev. Lett.
97 (2006) 160201 [cond-mat/0609651] [INSPIRE].
D.S. Dean and S.N. Majumdar, Extreme value statistics of eigenvalues of Gaussian random matrices, Phys. Rev.
E 77 (2008) 041108 [arXiv:0801.1730].
ADS
MathSciNet
Google Scholar
M.L. Mehta and M. Gaudin, On the density of Eigenvalues of a random matrix, Nucl. Phys.
18 (1960) 420.
MathSciNet
Article
MATH
Google Scholar
J.S. Chang and G. Cooper, A practical difference scheme for Fokker-Planck equations, J. Comput. Phys.
6 (1970) 1.
ADS
Article
MATH
Google Scholar
M. Mohammadi, and A. Borzì, Analysis of the Chang-Cooper discretization scheme for a class of Fokker-Planck equations, J. Num. Math.
23 (2015) 271.
L. Pareschi and M. Zanella, Structure preserving schemes for nonlinear Fokker-Planck equations and applications, arXiv:1702.00088.
C.A. Tracy and H. Widom, Level spacing distributions and the Airy kernel, Commun. Math. Phys.
159 (1994) 151 [hep-th/9211141] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
C.A. Tracy and H. Widom, On orthogonal and symplectic matrix ensembles, Commun. Math. Phys.
177 (1996) 727 [solv-int/9509007] [INSPIRE].
V.A. Marcenko and L.A. Pastur, Distribution of eigenvalues for some sets of random matrices, Math. USSR-Sbornik
1 (1967) 457.
Article
Google Scholar
B. Greene et al., Tumbling through a landscape: Evidence of instabilities in high-dimensional moduli spaces, Phys. Rev.
D 88 (2013) 026005 [arXiv:1303.4428] [INSPIRE].
ADS
Google Scholar
M. Dine and S. Paban, Tunneling in theories with many fields, JHEP
10 (2015) 088 [arXiv:1506.06428] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
C.W.J. Beenakker, Random-matrix theory of quantum transport, Rev. Mod. Phys.
69 (1997) 731 [cond-mat/9612179].
T. Guhr, A. Müller-Groeling and H.A. Weidenmuller, Random matrix theories in quantum physics: Common concepts, Phys. Rept.
299 (1998) 189 [cond-mat/9707301] [INSPIRE].
B. Eynard, T. Kimura and S. Ribault, Random matrices, arXiv:1510.04430 [INSPIRE].
J.E. Kim and G. Carosi, Axions and the strong CP problem, Rev. Mod. Phys.
82 (2010) 557 [arXiv:0807.3125] [INSPIRE].
ADS
Article
Google Scholar
P. Svrček and E. Witten, Axions in string theory, JHEP
06 (2006) 051 [hep-th/0605206] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
P. Di Vecchia and G. Veneziano, Chiral dynamics in the large-N limit, Nucl. Phys.
B 171 (1980) 253 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
G. Grilli di Cortona, E. Hardy, J. Pardo Vega and G. Villadoro, The QCD axion, precisely, JHEP
01 (2016) 034 [arXiv:1511.02867] [INSPIRE].
Article
Google Scholar