A. Polkovnikov, K. Sengupta, A. Silva and M. Vengalattore, Nonequilibrium dynamics of closed interacting quantum systems, Rev. Mod. Phys.
83 (2011) 863 [arXiv:1007.5331] [INSPIRE].
ADS
Article
Google Scholar
C. Gogolin and J. Eisert, Equilibration, thermalisation and the emergence of statistical mechanics in closed quantum systems, Rept. Prog. Phys.
79 (2016) 056001 [arXiv:1503.07538] [INSPIRE].
L. D’Alessio, Y. Kafri, A. Polkovnikov and M. Rigol, From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics, Adv. Phys.
65 (2016) 23 [arXiv:1509.06411] [INSPIRE].
Google Scholar
W.H. Zurek and J.P. Paz, Decoherence, chaos and the second law, Phys. Rev. Lett.
72 (1994) 2508 [gr-qc/9402006] [INSPIRE].
P.A. Miller and S. Sarkar, Signatures of chaos in the entanglement of two coupled quantum kicked tops, Phys. Rev.
E 60 (1999) 1542.
A.K. Pattanayak, Lyapunov exponents, entropy production, and decoherence, Phys. Rev. Lett.
83 (1999) 4526 [chao-dyn/9911017].
D. Monteoliva and J.P. Paz, Decoherence and the rate of entropy production in chaotic quantum systems, Phys. Rev. Lett.
85 (2000) 3373 [quant-ph/0007052].
A. Tanaka, H. Fujisaki and T. Miyadera, Saturation of the production of quantum entanglement between weakly coupled mapping systems in a strongly chaotic region, Phys. Rev.
E 66 (2002) 045201 [quant-ph/0209086].
H. Kim and D.A. Huse, Ballistic spreading of entanglement in a diffusive nonintegrable system, Phys. Rev. Lett.
111 (2013) 127205.
ADS
Article
Google Scholar
P. Calabrese and J.L. Cardy, Evolution of entanglement entropy in one-dimensional systems, J. Stat. Mech.
0504 (2005) P04010 [cond-mat/0503393] [INSPIRE].
P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech.
0406 (2004) P06002 [hep-th/0405152] [INSPIRE].
MATH
Google Scholar
J.S. Cotler, M.P. Hertzberg, M. Mezei and M.T. Mueller, Entanglement Growth after a Global Quench in Free Scalar Field Theory, JHEP
11 (2016) 166 [arXiv:1609.00872] [INSPIRE].
V. Balasubramanian et al., Thermalization of Strongly Coupled Field Theories, Phys. Rev. Lett.
106 (2011) 191601 [arXiv:1012.4753] [INSPIRE].
ADS
Article
Google Scholar
V. Balasubramanian et al., Holographic Thermalization, Phys. Rev.
D 84 (2011) 026010 [arXiv:1103.2683] [INSPIRE].
T. Hartman and J. Maldacena, Time Evolution of Entanglement Entropy from Black Hole Interiors, JHEP
05 (2013) 014 [arXiv:1303.1080] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
H. Liu and S.J. Suh, Entanglement Tsunami: Universal Scaling in Holographic Thermalization, Phys. Rev. Lett.
112 (2014) 011601 [arXiv:1305.7244] [INSPIRE].
H. Liu and S.J. Suh, Entanglement growth during thermalization in holographic systems, Phys. Rev.
D 89 (2014) 066012 [arXiv:1311.1200] [INSPIRE].
B. Müller and A. Schäfer, Entropy Creation in Relativistic Heavy Ion Collisions, Int. J. Mod. Phys.
E 20 (2011) 2235 [arXiv:1110.2378] [INSPIRE].
T. Kunihiro, B. Müller, A. Ohnishi, A. Schäfer, T.T. Takahashi and A. Yamamoto, Chaotic behavior in classical Yang-Mills dynamics, Phys. Rev.
D 82 (2010) 114015 [arXiv:1008.1156] [INSPIRE].
K. Hashimoto, K. Murata and K. Yoshida, Chaos in chiral condensates in gauge theories, Phys. Rev. Lett.
117 (2016) 231602 [arXiv:1605.08124] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
Y. Sekino and L. Susskind, Fast Scramblers, JHEP
10 (2008) 065 [arXiv:0808.2096] [INSPIRE].
M. Van Raamsdonk, Building up spacetime with quantum entanglement, Gen. Rel. Grav.
42 (2010) 2323 [arXiv:1005.3035] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
E. Bianchi and R.C. Myers, On the Architecture of Spacetime Geometry, Class. Quant. Grav.
31 (2014) 214002 [arXiv:1212.5183] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
E. Bianchi, L. Hackl and N. Yokomizo, Entanglement time in the primordial universe, Int. J. Mod. Phys.
D 24 (2015) 1544006 [arXiv:1512.08959] [INSPIRE].
L. Susskind, Entanglement is not enough, Fortsch. Phys.
64 (2016) 49 [arXiv:1411.0690] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
R. Jefferson and R.C. Myers, Circuit complexity in quantum field theory, JHEP
10 (2017) 107 [arXiv:1707.08570] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
S. Chapman, M.P. Heller, H. Marrochio and F. Pastawski, Towards Complexity for Quantum Field Theory States, arXiv:1707.08582 [INSPIRE].
V. Latora and M. Baranger, Kolmogorov-sinai entropy rate versus physical entropy, Phys. Rev. Lett.
82 (1999) 520 [chao-dyn/9806006].
M. Falcioni, L. Palatella and A. Vulpiani, Production rate of the coarse-grained gibbs entropy and the kolmogorov-sinai entropy: A real connection?, Phys. Rev.
E 71 (2005) 016118 [nlin/0407056].
A.N. Kolmogorov, A new metric invariant of transient dynamical systems and automorphisms in lebesgue spaces, Dokl. Akad. Nauk SSSR
119 (1958) 861.
MathSciNet
MATH
Google Scholar
Y. Sinai, Kolmogorov-Sinai entropy, Scholarpedia
4 (2009) 2034 [revision 91406].
G.M. Zaslavsky, Hamiltonian chaos and fractional dynamics, Oxford University Press (2008).
M. Cencini, F. Cecconi and A. Vulpiani, Chaos: from simple models to complex systems, vol. 17, World Scientific (2010).
T. Kunihiro, B. Müller, A. Ohnishi and A. Schäfer, Towards a Theory of Entropy Production in the Little and Big Bang, Prog. Theor. Phys.
121 (2009) 555 [arXiv:0809.4831] [INSPIRE].
ADS
Article
MATH
Google Scholar
C.T. Asplund and D. Berenstein, Entanglement entropy converges to classical entropy around periodic orbits, Annals Phys.
366 (2016) 113 [arXiv:1503.04857] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
E. Bianchi, L. Hackl and N. Yokomizo, Entanglement entropy of squeezed vacua on a lattice, Phys. Rev.
D 92 (2015) 085045 [arXiv:1507.01567] [INSPIRE].
L. Vidmar, L. Hackl, E. Bianchi and M. Rigol, Entanglement Entropy of Eigenstates of Quadratic Fermionic Hamiltonians, Phys. Rev. Lett.
119 (2017) 020601 [arXiv:1703.02979] [INSPIRE].
A.S. Holevo, Probabilistic and statistical aspects of quantum theory, vol. 1, Springer (2011).
V. Vedral, The role of relative entropy in quantum information theory, Rev. Mod. Phys.
74 (2002) 197 [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
M. Ohya and D. Petz, Quantum entropy and its use, Springer Science & Business Media (2004).
L. Hackl, E. Bianchi, R. Modak and M. Rigol, Entanglement production in bosonic systems: Linear and logarithmic growth, arXiv:1710.04279 [INSPIRE].
G. Floquet, Sur les équations différentielles linéaires à coefficients périodiques, Annales Sci. École Norm. Sup.
12 (1883) 47.
C. Chicone, Ordinary Differential Equations with Applications, Springer (1999).
A. Ashtekar and A. Magnon-Ashtekar, A geometrical approach to external potential problems in quantum field theory, Gen. Rel. Grav.
12 (1980) 205 [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
A. Ashtekar and A. Magnon, Quantum Fields in Curved Space-Times, Proc. Roy. Soc. Lond.
A 346 (1975) 375 [INSPIRE].
R.M. Wald, Quantum field theory in curved spacetime and black hole thermodynamics, University of Chicago Press (1994).
R. Haag, Local quantum physics: Fields, particles, algebras, Springer (2012).
D. Shale, Linear symmetries of free boson fields, Trans. Am. Math. Soc.
103 (1962) 149.
MathSciNet
Article
MATH
Google Scholar
D. Shale and W.F. Stinespring, States of the clifford algebra, Ann. Math.
80 (1964) 365.
MathSciNet
Article
MATH
Google Scholar
J.T. Ottesen, Infinite dimensional groups and algebras in quantum physics, vol. 27, Springer (2008).
F. Berezin, The method of second quantization, Pure and Applied Physics, Academic Press (1966).
N.D. Birrell and P.C.W. Davies, Quantum Fields in Curved Space, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, U.K. (1984).
L. Parker and D. Toms, Quantum field theory in curved spacetime: quantized fields and gravity, Cambridge University Press (2009).
S.W. Hawking, Particle Creation by Black Holes, Commun. Math. Phys.
43 (1975) 199 [Erratum ibid.
46 (1976) 206] [INSPIRE].
J.S. Schwinger, On gauge invariance and vacuum polarization, Phys. Rev.
82 (1951) 664 [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
W. Greiner, B. Muller and J. Rafelski, Quantum electrodynamics of strong fields, Springer (1985).
H.B. Casimir, On the attraction between two perfectly conducting plates, Kon. Ned. Akad. Wetensch. Proc.
51 (1948) 793 [INSPIRE].
MATH
Google Scholar
D. Klemm and O. Vaughan, Nonextremal black holes in gauged supergravity and the real formulation of special geometry II, Class. Quant. Grav.
30 (2013) 065003 [arXiv:1211.1618] [INSPIRE].
C.G. Torre and M. Varadarajan, Functional evolution of free quantum fields, Class. Quant. Grav.
16 (1999) 2651 [hep-th/9811222] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
I. Agullo and A. Ashtekar, Unitarity and ultraviolet regularity in cosmology, Phys. Rev.
D 91 (2015) 124010 [arXiv:1503.03407] [INSPIRE].
R.D. Sorkin, 1983 paper on entanglement entropy: “On the Entropy of the Vacuum outside a Horizon”, arXiv:1402.3589 [INSPIRE].
M. Srednicki, Entropy and area, Phys. Rev. Lett.
71 (1993) 666 [hep-th/9303048] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
J. Eisert, M. Cramer and M.B. Plenio, Area laws for the entanglement entropy — a review, Rev. Mod. Phys.
82 (2010) 277 [arXiv:0808.3773] [INSPIRE].
ADS
Article
MATH
Google Scholar
S. Hollands and K. Sanders, Entanglement measures and their properties in quantum field theory, arXiv:1702.04924 [INSPIRE].
L. Bombelli, R.K. Koul, J. Lee and R.D. Sorkin, A Quantum Source of Entropy for Black Holes, Phys. Rev.
D 34 (1986) 373 [INSPIRE].
H. Casini and M. Huerta, Remarks on the entanglement entropy for disconnected regions, JHEP
03 (2009) 048 [arXiv:0812.1773] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
E. Bianchi, T. De Lorenzo and M. Smerlak, Entanglement entropy production in gravitational collapse: covariant regularization and solvable models, JHEP
06 (2015) 180 [arXiv:1409.0144] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
C. Holzhey, F. Larsen and F. Wilczek, Geometric and renormalized entropy in conformal field theory, Nucl. Phys.
B 424 (1994) 443 [hep-th/9403108] [INSPIRE].
E. Bianchi and A. Satz, Entropy of a subalgebgra of observables and the geometric entanglement entropy, to appear (2018).
S. Weinberg, The quantum theory of fields, vol. 2, Cambridge University Press (1995).
F. Strocchi, Symmetry breaking, vol. 643, Springer (2005).
E. Calzetta and B.L. Hu, Nonequilibrium Quantum Fields: Closed Time Path Effective Action, Wigner Function and Boltzmann Equation, Phys. Rev.
D 37 (1988) 2878 [INSPIRE].
J. Berges, Nonequilibrium Quantum Fields: From Cold Atoms to Cosmology, arXiv:1503.02907 [INSPIRE].
J. Berges and J. Serreau, Parametric resonance in quantum field theory, Phys. Rev. Lett.
91 (2003) 111601 [hep-ph/0208070] [INSPIRE].
L. Kofman, A.D. Linde and A.A. Starobinsky, Reheating after inflation, Phys. Rev. Lett.
73 (1994) 3195 [hep-th/9405187] [INSPIRE].
ADS
Article
Google Scholar
L. Kofman, A.D. Linde and A.A. Starobinsky, Reheating after inflation, Phys. Rev. Lett.
73 (1994) 3195 [hep-th/9405187] [INSPIRE].
ADS
Article
Google Scholar
R. Allahverdi, R. Brandenberger, F.-Y. Cyr-Racine and A. Mazumdar, Reheating in Inflationary Cosmology: Theory and Applications, Ann. Rev. Nucl. Part. Sci.
60 (2010) 27 [arXiv:1001.2600] [INSPIRE].
ADS
Article
Google Scholar
M.A. Amin, M.P. Hertzberg, D.I. Kaiser and J. Karouby, Nonperturbative Dynamics Of Reheating After Inflation: A Review, Int. J. Mod. Phys.
D 24 (2014) 1530003 [arXiv:1410.3808] [INSPIRE].
S. Mrówczynski and B. Müller, Reheating after supercooling in the chiral phase transition, Phys. Lett.
B 363 (1995) 1 [nucl-th/9507033] [INSPIRE].
X. Busch, R. Parentani and S. Robertson, Quantum entanglement due to a modulated dynamical Casimir effect, Phys. Rev.
A 89 (2014) 063606 [arXiv:1404.5754] [INSPIRE].
P.O. Fedichev and U.R. Fischer, ’Cosmological’ quasiparticle production in harmonically trapped superfluid gases, Phys. Rev.
A 69 (2004) 033602 [cond-mat/0303063] [INSPIRE].
I. Carusotto, R. Balbinot, A. Fabbri and A. Recati, Density correlations and dynamical Casimir emission of Bogoliubov phonons in modulated atomic Bose-Einstein condensates, Eur. Phys. J.
D 56 (2010) 391 [arXiv:0907.2314] [INSPIRE].
J.C. Jaskula et al., An acoustic analog to the dynamical Casimir effect in a Bose-Einstein condensate, Phys. Rev. Lett.
109 (2012) 220401 [arXiv:1207.1338] [INSPIRE].
ADS
Article
Google Scholar
J. Steinhauer, Observation of quantum Hawking radiation and its entanglement in an analogue black hole, Nature Phys.
12 (2016) 959 [arXiv:1510.00621] [INSPIRE].
ADS
Article
Google Scholar
D. Campo and R. Parentani, Inflationary spectra and partially decohered distributions, Phys. Rev.
D 72 (2005) 045015 [astro-ph/0505379] [INSPIRE].
D. Polarski and A.A. Starobinsky, Semiclassicality and decoherence of cosmological perturbations, Class. Quant. Grav.
13 (1996) 377 [gr-qc/9504030] [INSPIRE].
C. Kiefer, D. Polarski and A.A. Starobinsky, Entropy of gravitons produced in the early universe, Phys. Rev.
D 62 (2000) 043518 [gr-qc/9910065] [INSPIRE].
J. Martin and V. Vennin, Quantum Discord of Cosmic Inflation: Can we Show that CMB Anisotropies are of Quantum-Mechanical Origin?, Phys. Rev.
D 93 (2016) 023505 [arXiv:1510.04038] [INSPIRE].
ADS
MathSciNet
Google Scholar
V.I. Arnold, Mathematical methods of classical mechanics, vol. 60, Springer (2013).
J.P. Eckmann and D. Ruelle, Ergodic theory of chaos and strange attractors, Rev. Mod. Phys.
57 (1985) 617 [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
F. Ginelli, P. Poggi, A. Turchi, H. Chaté, R. Livi and A. Politi, Characterizing dynamics with covariant lyapunov vectors, Phys. Rev. Lett.
99 (2007) 130601 [arXiv:0706.0510].
ADS
Article
Google Scholar
Y.B. Pesin, Characteristic lyapunov exponents and smooth ergodic theory, Russ. Math. Surv.
32 (1977) 55.
Article
MATH
Google Scholar
G. Bennetin, L. Galgani, A. Giorgilli and J. Strelcyn, Lyapunov characteristic exponents for smooth dynamical systems and for hamiltonian systems: A method for computing all of them, Meccanica
15 (1980) 9.
ADS
Article
MATH
Google Scholar
P. Calabrese and J. Cardy, Quantum Quenches in Extended Systems, J. Stat. Mech.
0706 (2007) P06008 [arXiv:0704.1880] [INSPIRE].
G. De Chiara, S. Montangero, P. Calabrese and R. Fazio, Entanglement entropy dynamics in Heisenberg chains, J. Stat. Mech.
0603 (2006) P03001 [cond-mat/0512586] [INSPIRE].
M. Fagotti and P. Calabrese, Evolution of entanglement entropy following a quantum quench: Analytic results for the XY chain in a transverse magnetic field, Phys. Rev.
A 78 (2008) 010306 [arXiv:0804.3559].
V. Eisler and I. Peschel, Entanglement in a periodic quench, Annalen Phys.
520 (2008) 410 [arXiv:0803.2655].
ADS
Article
MATH
Google Scholar
A.M. Läuchli and C. Kollath, Spreading of correlations and entanglement after a quench in the one-dimensional bose-hubbard model, J. Stat. Mech.
5 (2008) 05018 [arXiv:0803.2947].
V. Alba and P. Calabrese, Entanglement and thermodynamics after a quantum quench in integrable systems, Proc. Nat. Acad. Sci.
114 (2017) 7947 [arXiv:1608.00614].
S.L. Braunstein and P. Van Loock, Quantum information with continuous variables, Rev. Mod. Phys.
77 (2005) 513 [quant-ph/0410100].
A. Ferraro, S. Olivares and M.G. Paris, Gaussian states in continuous variable quantum information, Bibliopolis, Napoli (2005) [quant-ph/0503237].
C. Weedbrook et al., Gaussian quantum information, Rev. Mod. Phys.
84 (2012) 621 [arXiv:1110.3234].
ADS
Article
Google Scholar
G. Adesso, S. Ragy and A.R. Lee, Continuous variable quantum information: Gaussian states and beyond, Open Syst. Inf. Dyn.
21 (2014) 1440001 [arXiv:1401.4679].
J.M. Deutsch, Quantum statistical mechanics in a closed system, Phys. Rev.
A 43 (1991) 2046.
M. Srednicki, Chaos and quantum thermalization, Phys. Rev.
E 50 (1994) 888.
M. Rigol, V. Dunjko and M. Olshanii, Thermalization and its mechanism for generic isolated quantum systems, Nature
452 (2008) 854.
ADS
Article
Google Scholar
M.C. Gutzwiller, Chaos in classical and quantum mechanics, vol. 1, Springer (2013).
F. Haake, Quantum signatures of chaos, vol. 54, Springer (2013).
L. Reichl, The transition to chaos: conservative classical systems and quantum manifestations, Springer (2013).
T. Biro, S.G. Matinyan and B. Muller, Chaos and gauge field theory, World Sci. Lect. Notes Phys.
56 (1994) 1.
MathSciNet
MATH
Google Scholar
C.C. Martens, R.L. Waterland and W.P. Reinhardt, Classical, semiclassical, and quantum mechanics of a globally chaotic system: Integrability in the adiabatic approximation, J. Chem. Phys.
90 (1989) 2328.
ADS
MathSciNet
Article
Google Scholar
J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP
08 (2016) 106 [arXiv:1503.01409] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
D. Berenstein and A.M. Garcia-Garcia, Universal quantum constraints on the butterfly effect, arXiv:1510.08870 [INSPIRE].
G.B. Folland, Harmonic Analysis in Phase Space. (AM-122), first edition, Princeton University Press (1989).
M.A. de Gosson, Symplectic geometry and quantum mechanics, vol. 166, Springer (2006).
P. Woit, Quantum theory, groups and representations: An introduction, Springer (2017).
J. von Neumann, Die Eindeutigkeit der Schrödingerschen Operatoren, Math. Ann.
104 (1931) 570.
H.J. Groenewold, On the Principles of elementary quantum mechanics, Physica
12 (1946) 405 [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
D.F. Walls and G.J. Milburn, Quantum optics, Springer (2007).