Skip to main content

Heavy charged scalars from \( c\overline{s} \) fusion: a generic search strategy applied to a 3HDM with U(1) × U(1) family symmetry

A preprint version of the article is available at arXiv.

Abstract

We describe a class of three Higgs doublet models (3HDMs) with a softly broken U(1) × U(1) family symmetry that enforces a Cabibbo-like quark mixing while forbidding tree-level flavour changing neutral currents. The hierarchy in the observed quark masses is partly explained by a softer hierarchy in the vacuum expectation values of the three Higgs doublets. As a consequence, the physical scalar spectrum contains a Standard Model (SM) like Higgs boson h125 while exotic scalars couple the strongest to the second quark family, leading to rather unconventional discovery channels that could be probed at the Large Hadron Collider. In particular, we describe a search strategy for the lightest charged Higgs boson H±, through the process \( c\overline{s}\to {H}^{+}\to {W}^{+}{h}_{125} \), using a multivariate analysis that leads to an excellent discriminatory power against the SM background. Although the analysis is applied to the proposed class of 3HDMs, we employ a model-independent formulation such that it can be applied to any other model with the same discovery channel.

References

  1. G.C. Branco et al., Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE].

    ADS  Article  Google Scholar 

  2. S. Weinberg, Gauge theory of CP-violation, Phys. Rev. Lett. 37 (1976) 657 [INSPIRE].

    ADS  Article  Google Scholar 

  3. G. Branco, A. Buras and J.M. Gérard, CP violation in models with two- and three-scalar doublets, Nucl. Phys. B 259 (1985) 306.

    ADS  Article  Google Scholar 

  4. F. Botella, G. Branco and M. Rebelo, Minimal flavour violation and multi-Higgs models, Phys. Lett. B 687 (2010) 194.

    ADS  Article  Google Scholar 

  5. I.P. Ivanov and C.C. Nishi, Symmetry breaking patterns in 3HDM, JHEP 01 (2015) 021 [arXiv:1410.6139] [INSPIRE].

    ADS  Article  Google Scholar 

  6. A.G. Akeroyd, S. Moretti, K. Yagyu and E. Yildirim, Light charged Higgs boson scenario in 3-Higgs doublet models, Int. J. Mod. Phys. A 32 (2017) 1750145 [arXiv:1605.05881] [INSPIRE].

    ADS  Article  Google Scholar 

  7. J.E. Camargo-Molina, R. Pasechnik and J. Wessén, Charged scalars from SU(3)3 theories, PoS(CHARGED2016)030 [arXiv:1701.02757] [INSPIRE].

  8. M. Merchand and M. Sher, Three doublet lepton-specific model, Phys. Rev. D 95 (2017) 055004 [arXiv:1611.06887] [INSPIRE].

    ADS  Google Scholar 

  9. S. Moretti and K. Yagyu, Constraints on parameter space from perturbative unitarity in models with three scalar doublets, Phys. Rev. D 91 (2015) 055022 [arXiv:1501.06544] [INSPIRE].

    ADS  Google Scholar 

  10. D. Das and U.K. Dey, Analysis of an extended scalar sector with S 3 symmetry, Phys. Rev. D 89 (2014) 095025 [arXiv:1404.2491] [INSPIRE].

    ADS  Google Scholar 

  11. D. Emmanuel-Costa, O.M. Ogreid, P. Osland and M.N. Rebelo, Spontaneous symmetry breaking in the S 3 -symmetric scalar sector, JHEP 02 (2016) 154 [Erratum ibid. 1608 (2016) 169] [arXiv:1601.04654] [INSPIRE].

  12. V. Keus, S.F. King and S. Moretti, Three-Higgs-doublet models: symmetries, potentials and Higgs boson masses, JHEP 01 (2014) 052 [arXiv:1310.8253] [INSPIRE].

    ADS  Article  Google Scholar 

  13. I.P. Ivanov, V. Keus and E. Vdovin, Abelian symmetries in multi-Higgs-doublet models, J. Phys. A 45 (2012) 215201 [arXiv:1112.1660] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  14. ATLAS collaboration, Search for charged Higgs bosons in the H ±tb decay channel in pp collisions at \( \sqrt{s}=13 \) TeV using the ATLAS detector, ATLAS-CONF-2016-089 (2016).

  15. CMS collaboration, Search for a charged Higgs boson in pp collisions at \( \sqrt{s}=8 \) TeV, JHEP 11 (2015) 018 [arXiv:1508.07774] [INSPIRE].

  16. H. Georgi and M. Machacek, Doubly charged Higgs bosons, Nucl. Phys. B 262 (1985) 463 [INSPIRE].

    ADS  Article  Google Scholar 

  17. ATLAS collaboration, Search for a charged Higgs boson produced in the vector-boson fusion mode with decay H ±W ± Z using pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS experiment, Phys. Rev. Lett. 114 (2015) 231801 [arXiv:1503.04233] [INSPIRE].

  18. CMS collaboration, Search for charged Higgs bosons produced via vector boson fusion and decaying into a pair of W and Z bosons using pp collisions at \( \sqrt{s}=13 \) TeV, Phys. Rev. Lett. 119 (2017) 141802 [arXiv:1705.02942] [INSPIRE].

  19. ATLAS collaboration, Search for charged Higgs bosons decaying via H ±τ ± ν in fully hadronic final states using pp collision data at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 03 (2015) 088 [arXiv:1412.6663] [INSPIRE].

  20. ATLAS collaboration, Search for a light charged Higgs boson in the decay channel \( {H}^{+}\to c\overline{s} \) in \( t\overline{t} \) events using pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Eur. Phys. J. C 73 (2013) 2465 [arXiv:1302.3694] [INSPIRE].

  21. CMS collaboration, Search for a light charged Higgs boson decaying to \( c\overline{s} \) in pp collisions at \( \sqrt{s}=8 \) TeV, JHEP 12 (2015) 178 [arXiv:1510.04252] [INSPIRE].

  22. CMS collaboration, Search for charged Higgs boson to \( \mathrm{c}\overline{\mathrm{b}} \) in lepton+jets channel using top quark pair events, CMS-PAS-HIG-16-030 (2016).

  23. DELPHI collaboration, J. Abdallah et al., Search for charged Higgs bosons at LEP in general two Higgs doublet models, Eur. Phys. J. C 34 (2004) 399 [hep-ex/0404012] [INSPIRE].

  24. OPAL collaboration, G. Abbiendi et al., Search for charged Higgs bosons in e + e collisions at \( \sqrt{s}=189-209 \) GeV, Eur. Phys. J. C 72 (2012) 2076 [arXiv:0812.0267] [INSPIRE].

  25. S. Moretti, The W ± h decay channel as a probe of charged Higgs boson production at the large hadron collider, Phys. Lett. B 481 (2000) 49 [hep-ph/0003178] [INSPIRE].

  26. R. Enberg, W. Klemm, S. Moretti, S. Munir and G. Wouda, Charged Higgs boson in the W ± Higgs channel at the Large Hadron Collider, Nucl. Phys. B 893 (2015) 420 [arXiv:1412.5814] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  27. S. Moretti, R. Santos and P. Sharma, Optimising charged Higgs boson searches at the Large Hadron Collider across \( b\overline{b}{W}^{\pm } \) final states, Phys. Lett. B 760 (2016) 697 [arXiv:1604.04965] [INSPIRE].

    ADS  Article  Google Scholar 

  28. S. Dittmaier, G. Hiller, T. Plehn and M. Spannowsky, Charged-Higgs collider signals with or without flavor, Phys. Rev. D 77 (2008) 115001 [arXiv:0708.0940] [INSPIRE].

    ADS  Google Scholar 

  29. W. Altmannshofer et al., Collider signatures of flavorful Higgs bosons, Phys. Rev. D 94 (2016) 115032 [arXiv:1610.02398] [INSPIRE].

    ADS  Google Scholar 

  30. C. Froggatt and H. Nielsen, Hierarchy of quark masses, cabibbo angles and CP violation, Nucl. Phys. B 147 (1979) 277.

    ADS  Article  Google Scholar 

  31. A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].

  32. C. Degrande et al., UFO — The Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].

    ADS  Article  Google Scholar 

  33. J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

    ADS  Article  Google Scholar 

  34. R.D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244 [arXiv:1207.1303] [INSPIRE].

    ADS  Article  Google Scholar 

  35. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

  36. DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].

  37. M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  38. M. Cacciari, G.P. Salam and G. Soyez, The anti-k(t) jet clustering algorithm, JHEP 04 (2008)063 [arXiv:0802.1189] [INSPIRE].

  39. A. Hocker et al., TMVA —- Toolkit for multivariate data analysis, PoS(ACAT)040 [physics/0703039] [INSPIRE].

  40. P. Konar, K. Kong and K.T. Matchev, \( {\sqrt{\widehat{s}}}_{\min } \) : a global inclusive variable for determining the mass scale of new physics in events with missing energy at hadron colliders, JHEP 03 (2009) 085 [arXiv:0812.1042] [INSPIRE].

  41. ATLAS collaboration, Search for heavy resonances decaying to a W or Z boson and a Higgs boson in final states with leptons and b-jets in 36.1 fb −1 of pp collision data at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2017-055 (2017).

  42. CMS collaboration, Combination of searches for heavy resonances decaying to W W , W Z, ZZ, WH and ZH boson pairs in proton-proton collisions at \( \sqrt{s}=8 \) and 13 TeV, Phys. Lett. B 774 (2017) 533 [arXiv:1705.09171] [INSPIRE].

  43. J. Li, R. Patrick, P. Sharma and A.G. Williams, Boosting the charged Higgs search prospects using jet substructure at the LHC, JHEP 11 (2016) 164 [arXiv:1609.02645] [INSPIRE].

    ADS  Article  Google Scholar 

  44. R. Patrick, P. Sharma and A.G. Williams, Exploring a heavy charged Higgs using jet substructure in a fully hadronic channel, Nucl. Phys. B 917 (2017) 19 [arXiv:1610.05917] [INSPIRE].

    ADS  Article  Google Scholar 

  45. P.C. Bhat, Multivariate analysis methods in particle physics, Ann. Rev. Nucl. Part. Sci. 61 (2011) 281.

    ADS  Article  Google Scholar 

  46. M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].

    ADS  Google Scholar 

  47. P. Bamert and C.P. Burgess, Negative S and light new physics, Z. Phys. C 66 (1995) 495 [hep-ph/9407203] [INSPIRE].

  48. C. Burgess et al., A global fit to extended oblique parameters, Phys. Lett. B 326 (1994) 276.

    ADS  Article  Google Scholar 

  49. W. Grimus, L. Lavoura, O. Ogreid and P. Osland, The oblique parameters in multi-higgs-doublet models, Nucl. Phys. B 801 (2008) 81.

    ADS  Article  MATH  Google Scholar 

  50. Particle Data Group collaboration, C. Patrignani et al., Review of Particle Physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].

  51. J.E. Camargo-Molina and J. Wessén, in preparation.

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Eliel Camargo-Molina.

Additional information

ArXiv ePrint: 1711.03551

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Camargo-Molina, J.E., Mandal, T., Pasechnik, R. et al. Heavy charged scalars from \( c\overline{s} \) fusion: a generic search strategy applied to a 3HDM with U(1) × U(1) family symmetry. J. High Energ. Phys. 2018, 24 (2018). https://doi.org/10.1007/JHEP03(2018)024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2018)024

Keywords

  • Beyond Standard Model
  • Higgs Physics
  • Quark Masses and SM Parameters