Skip to main content

Constraining scalar resonances with top-quark pair production at the LHC

A preprint version of the article is available at arXiv.

Abstract

Constraints on models which predict resonant top-quark pair production at the LHC are provided via a reinterpretation of the Standard Model (SM) particle level measurement of the top-anti-top invariant mass distribution, \( m\left(t\overline{t}\right) \). We make use of state-of-the-art Monte Carlo event simulation to perform a direct comparison with measurements of \( m\left(t\overline{t}\right) \) in the semi-leptonic channels, considering both the boosted and the resolved regime of the hadronic top decays. A simplified model to describe various scalar resonances decaying into top-quarks is considered, including CP-even and CP-odd, color-singlet and color-octet states, and the excluded regions in the respective parameter spaces are provided.

References

  1. V. Barger, W.-Y. Keung and B. Yencho, Azimuthal correlations in top pair decays and the effects of new heavy scalars, Phys. Rev. D 85 (2012) 034016 [arXiv:1112.5173] [INSPIRE].

    ADS  Google Scholar 

  2. S. Choi and H.S. Lee, Azimuthal decorrelation in \( t\overline{t} \) production at hadron colliders, Phys. Rev. D 87 (2013) 034012 [arXiv:1207.1484] [INSPIRE].

  3. D. Buarque Franzosi and C. Zhang, Probing the top-quark chromomagnetic dipole moment at next-to-leading order in QCD, Phys. Rev. D 91 (2015) 114010 [arXiv:1503.08841] [INSPIRE].

    ADS  Google Scholar 

  4. C. Zhang, Single top production at next-to-leading order in the Standard Model effective field theory, Phys. Rev. Lett. 116 (2016) 162002 [arXiv:1601.06163] [INSPIRE].

    ADS  Article  Google Scholar 

  5. C. Englert, L. Moore, K. Nordström and M. Russell, Giving top quark effective operators a boost, Phys. Lett. B 763 (2016) 9 [arXiv:1607.04304] [INSPIRE].

    ADS  Article  Google Scholar 

  6. V. Cirigliano, W. Dekens, J. de Vries and E. Mereghetti, Constraining the top-Higgs sector of the Standard Model effective field theory, Phys. Rev. D 94 (2016) 034031 [arXiv:1605.04311] [INSPIRE].

    ADS  Google Scholar 

  7. CDF collaboration, T. Aaltonen et al., Search for new color-octet vector particle decaying to \( t\overline{t} \) in \( p\overline{p} \) collisions at \( \sqrt{s}=1.96 \) TeV, Phys. Lett. B 691 (2010) 183 [arXiv:0911.3112] [INSPIRE].

  8. CMS collaboration, Search for resonant \( t\overline{t} \) production in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. D 93 (2016) 012001 [arXiv:1506.03062] [INSPIRE].

  9. CMS collaboration, Searches for new physics using the \( t\overline{t} \) invariant mass distribution in pp collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. Lett. 111 (2013) 211804 [Erratum ibid. 112 (2014) 119903] [arXiv:1309.2030] [INSPIRE].

  10. T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [INSPIRE].

  11. A. Buckley et al., Rivet user manual, Comput. Phys. Commun. 184 (2013) 2803 [arXiv:1003.0694] [INSPIRE].

    ADS  Article  Google Scholar 

  12. ATLAS collaboration, Measurement of the differential cross-section of highly boosted top quarks as a function of their transverse momentum in \( \sqrt{s}=8 \) TeV proton-proton collisions using the ATLAS detector, Phys. Rev. D 93 (2016) 032009 [arXiv:1510.03818] [INSPIRE].

  13. ATLAS collaboration, Measurements of top-quark pair differential cross-sections in the lepton+jets channel in pp collisions at \( \sqrt{s}=8 \) TeV using the ATLAS detector, Eur. Phys. J. C 76 (2016) 538 [arXiv:1511.04716] [INSPIRE].

  14. J.M. Butterworth, D. Grellscheid, M. Krämer, B. Sarrazin and D. Yallup, Constraining new physics with collider measurements of Standard Model signatures, JHEP 03 (2017) 078 [arXiv:1606.05296] [INSPIRE].

    ADS  Article  Google Scholar 

  15. T. Gleisberg, S. Höche, F. Krauss, A. Schälicke, S. Schumann and J.-C. Winter, SHERPA 1.α: a proof of concept version, JHEP 02 (2004) 056 [hep-ph/0311263] [INSPIRE].

  16. S. Schumann and F. Krauss, A parton shower algorithm based on Catani-Seymour dipole factorisation, JHEP 03 (2008) 038 [arXiv:0709.1027] [INSPIRE].

    ADS  Article  Google Scholar 

  17. S. Höche, F. Krauss, S. Schumann and F. Siegert, QCD matrix elements and truncated showers, JHEP 05 (2009) 053 [arXiv:0903.1219] [INSPIRE].

    Article  ADS  Google Scholar 

  18. S. Höche, F. Krauss, M. Schönherr and F. Siegert, QCD matrix elements + parton showers: the NLO case, JHEP 04 (2013) 027 [arXiv:1207.5030] [INSPIRE].

    Article  ADS  Google Scholar 

  19. T. Gleisberg and S. Höche, Comix, a new matrix element generator, JHEP 12 (2008) 039 [arXiv:0808.3674] [INSPIRE].

    ADS  Article  Google Scholar 

  20. S. Actis, A. Denner, L. Hofer, J.-N. Lang, A. Scharf and S. Uccirati, RECOLA: REcursive Computation of One-Loop Amplitudes, Comput. Phys. Commun. 214 (2017) 140 [arXiv:1605.01090] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  21. B. Biedermann, S. Bräuer, A. Denner, M. Pellen, S. Schumann and J.M. Thompson, Automation of NLO QCD and EW corrections with Sherpa and Recola, Eur. Phys. J. C 77 (2017) 492 [arXiv:1704.05783] [INSPIRE].

    ADS  Article  Google Scholar 

  22. A. Denner, S. Dittmaier and L. Hofer, Collier: a fortran-based Complex One-Loop LIbrary in Extended Regularizations, Comput. Phys. Commun. 212 (2017) 220 [arXiv:1604.06792] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  23. S. Höche, S. Kuttimalai, S. Schumann and F. Siegert, Beyond Standard Model calculations with Sherpa, Eur. Phys. J. C 75 (2015) 135 [arXiv:1412.6478] [INSPIRE].

    ADS  Article  Google Scholar 

  24. F. Krauss, D. Napoletano and S. Schumann, Simulating b-associated production of Z and Higgs bosons with the SHERPA event generator, Phys. Rev. D 95 (2017) 036012 [arXiv:1612.04640] [INSPIRE].

    ADS  Google Scholar 

  25. J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

    ADS  Article  Google Scholar 

  26. T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].

  27. P. Artoisenet, R. Frederix, O. Mattelaer and R. Rietkerk, Automatic spin-entangled decays of heavy resonances in Monte Carlo simulations, JHEP 03 (2013) 015 [arXiv:1212.3460] [INSPIRE].

    ADS  Article  Google Scholar 

  28. J. Alwall et al., Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions, Eur. Phys. J. C 53 (2008) 473 [arXiv:0706.2569] [INSPIRE].

    ADS  Article  Google Scholar 

  29. M. Dobbs and J.B. Hansen, The HepMC C++ Monte Carlo event record for high energy physics, Comput. Phys. Commun. 134 (2001) 41 [INSPIRE].

    ADS  Article  Google Scholar 

  30. M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  31. M. Cacciari, G.P. Salam and G. Soyez, The catchment area of jets, JHEP 04 (2008) 005 [arXiv:0802.1188] [INSPIRE].

    ADS  Article  Google Scholar 

  32. M. Cacciari and G.P. Salam, Pileup subtraction using jet areas, Phys. Lett. B 659 (2008) 119 [arXiv:0707.1378] [INSPIRE].

    ADS  Article  Google Scholar 

  33. D. Krohn, J. Thaler and L.-T. Wang, Jet trimming, JHEP 02 (2010) 084 [arXiv:0912.1342] [INSPIRE].

    ADS  Article  Google Scholar 

  34. ATLAS collaboration, Performance of jet substructure techniques for large-R jets in proton-proton collisions at \( \sqrt{s}=7 \) TeV using the ATLAS detector, JHEP 09 (2013) 076 [arXiv:1306.4945] [INSPIRE].

  35. J.M. Butterworth, B.E. Cox and J.R. Forshaw, W W scattering at the CERN LHC, Phys. Rev. D 65 (2002) 096014 [hep-ph/0201098] [INSPIRE].

  36. S. Höche, F. Krauss, M. Schönherr and F. Siegert, NLO matrix elements and truncated showers, JHEP 08 (2011) 123 [arXiv:1009.1127] [INSPIRE].

    ADS  Article  Google Scholar 

  37. E. Bothmann, M. Schönherr and S. Schumann, Reweighting QCD matrix-element and parton-shower calculations, Eur. Phys. J. C 76 (2016) 590 [arXiv:1606.08753] [INSPIRE].

    ADS  Article  Google Scholar 

  38. M. Czakon, D. Heymes and A. Mitov, Bump hunting in LHC \( t\overline{t} \) events, Phys. Rev. D 94 (2016) 114033 [arXiv:1608.00765] [INSPIRE].

    ADS  Google Scholar 

  39. A.V. Manohar and M.B. Wise, Flavor changing neutral currents, an extended scalar sector and the Higgs production rate at the CERN LHC, Phys. Rev. D 74 (2006) 035009 [hep-ph/0606172] [INSPIRE].

  40. E. Farhi and L. Susskind, Technicolor, Phys. Rept. 74 (1981) 277 [INSPIRE].

    ADS  Article  Google Scholar 

  41. A. Belyaev et al., Di-boson signatures as standard candles for partial compositeness, JHEP 01 (2017) 094 [Erratum ibid. 12 (2017) 088] [arXiv:1610.06591] [INSPIRE].

  42. G.C. Branco, P.M. Ferreira, L. Lavoura, M.N. Rebelo, M. Sher and J.P. Silva, Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE].

    ADS  Article  Google Scholar 

  43. A. Hayreter and G. Valencia, LHC constraints on color octet scalars, Phys. Rev. D 96 (2017) 035004 [arXiv:1703.04164] [INSPIRE].

    ADS  Google Scholar 

  44. ATLAS collaboration, Search for new phenomena with photon+jet events in proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, JHEP 03 (2016) 041 [arXiv:1512.05910] [INSPIRE].

  45. ATLAS collaboration, Search for new phenomena in high-mass final states with a photon and a jet from pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Eur. Phys. J. C 78 (2018) 102 [arXiv:1709.10440] [INSPIRE].

  46. A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — a complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].

  47. C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer and T. Reiter, UFO — the Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].

    ADS  Article  Google Scholar 

  48. J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  49. M. Czakon, D. Heymes, A. Mitov, D. Pagani, I. Tsinikos and M. Zaro, Top-pair production at the LHC through NNLO QCD and NLO EW, JHEP 10 (2017) 186 [arXiv:1705.04105] [INSPIRE].

    ADS  Article  Google Scholar 

  50. K.J.F. Gaemers and F. Hoogeveen, Higgs production and decay into heavy flavors with the gluon fusion mechanism, Phys. Lett. B 146 (1984) 347 [INSPIRE].

    ADS  Article  Google Scholar 

  51. D. Dicus, A. Stange and S. Willenbrock, Higgs decay to top quarks at hadron colliders, Phys. Lett. B 333 (1994) 126 [hep-ph/9404359] [INSPIRE].

  52. R. Frederix and F. Maltoni, Top pair invariant mass distribution: a window on new physics, JHEP 01 (2009) 047 [arXiv:0712.2355] [INSPIRE].

    ADS  Article  Google Scholar 

  53. S. Gori, I.-W. Kim, N.R. Shah and K.M. Zurek, Closing the wedge: search strategies for extended Higgs sectors with heavy flavor final states, Phys. Rev. D 93 (2016) 075038 [arXiv:1602.02782] [INSPIRE].

    ADS  Google Scholar 

  54. S. Jung, J. Song and Y.W. Yoon, Dip or nothingness of a Higgs resonance from the interference with a complex phase, Phys. Rev. D 92 (2015) 055009 [arXiv:1505.00291] [INSPIRE].

    ADS  Google Scholar 

  55. A. Djouadi, J. Ellis and J. Quevillon, Interference effects in the decays of spin-zero resonances into γγ and tt, JHEP 07 (2016) 105 [arXiv:1605.00542] [INSPIRE].

    ADS  Article  Google Scholar 

  56. W. Bernreuther, P. Galler, C. Mellein, Z.G. Si and P. Uwer, Production of heavy Higgs bosons and decay into top quarks at the LHC, Phys. Rev. D 93 (2016) 034032 [arXiv:1511.05584] [INSPIRE].

    ADS  Google Scholar 

  57. B. Hespel, F. Maltoni and E. Vryonidou, Signal background interference effects in heavy scalar production and decay to a top-anti-top pair, JHEP 10 (2016) 016 [arXiv:1606.04149] [INSPIRE].

    ADS  Article  Google Scholar 

  58. D. Buarque Franzosi, E. Vryonidou and C. Zhang, Scalar production and decay to top quarks including interference effects at NLO in QCD in an EFT approach, JHEP 10 (2017) 096 [arXiv:1707.06760] [INSPIRE].

    Article  Google Scholar 

  59. ATLAS collaboration, Search for heavy Higgs bosons A/H decaying to a top quark pair in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. Lett. 119 (2017) 191803 [arXiv:1707.06025] [INSPIRE].

  60. P. Fileviez Perez, R. Gavin, T. McElmurry and F. Petriello, Grand unification and light color-octet scalars at the LHC, Phys. Rev. D 78 (2008) 115017 [arXiv:0809.2106] [INSPIRE].

    ADS  Google Scholar 

  61. I.V. Frolov, M.V. Martynov and A.D. Smirnov, Resonance contribution of scalar color octet to \( t\overline{t} \) production at the LHC in the minimal four-color quark-lepton symmetry model, Mod. Phys. Lett. A 31 (2016) 1650224 [arXiv:1610.08409] [INSPIRE].

    ADS  Article  Google Scholar 

  62. M. Gerbush, T.J. Khoo, D.J. Phalen, A. Pierce and D. Tucker-Smith, Color-octet scalars at the CERN LHC, Phys. Rev. D 77 (2008) 095003 [arXiv:0710.3133] [INSPIRE].

    ADS  Google Scholar 

  63. C. Kim and T. Mehen, Color octet scalar bound states at the LHC, Phys. Rev. D 79 (2009) 035011 [arXiv:0812.0307] [INSPIRE].

    ADS  Google Scholar 

  64. S. Schumann, A. Renaud and D. Zerwas, Hadronically decaying color-adjoint scalars at the LHC, JHEP 09 (2011) 074 [arXiv:1108.2957] [INSPIRE].

    ADS  Article  Google Scholar 

  65. ATLAS collaboration, Measurements of top-quark pair differential cross-sections in the lepton+jets channel in pp collisions at \( \sqrt{s}=13 \) TeV using the ATLAS detector, JHEP 11 (2017) 191 [arXiv:1708.00727] [INSPIRE].

  66. CMS collaboration, Search for resonant \( t\overline{t} \) production in lepton+jets events in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 12 (2012) 015 [arXiv:1209.4397] [INSPIRE].

  67. CMS collaboration, Search for \( t\overline{t} \) resonances in highly boosted lepton+jets and fully hadronic final states in proton-proton collisions at \( \sqrt{s}=13 \) TeV, JHEP 07 (2017) 001 [arXiv:1704.03366] [INSPIRE].

  68. ATLAS collaboration, Search for new phenomena in dijet events using 37 fb −1 of pp collision data collected at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Rev. D 96 (2017) 052004 [arXiv:1703.09127] [INSPIRE].

  69. ATLAS collaboration, Search for new phenomena in high-mass diphoton final states using 37 fb −1 of proton-proton collisions collected at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Lett. B 775 (2017) 105 [arXiv:1707.04147] [INSPIRE].

  70. C. Anastasiou et al., CP-even scalar boson production via gluon fusion at the LHC, JHEP 09 (2016)037 [arXiv:1605.05761] [INSPIRE].

  71. T. Alanne, M.T. Frandsen and D. Buarque Franzosi, Testing a dynamical origin of Standard Model fermion masses, Phys. Rev. D 94 (2016) 071703 [arXiv:1607.01440] [INSPIRE].

    ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diogo Buarque Franzosi.

Additional information

ArXiv ePrint: 1711.00102

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Franzosi, D.B., Fabbri, F. & Schumann, S. Constraining scalar resonances with top-quark pair production at the LHC. J. High Energ. Phys. 2018, 22 (2018). https://doi.org/10.1007/JHEP03(2018)022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2018)022

Keywords

  • Beyond Standard Model
  • Perturbative QCD
  • Technicolor and Composite Models