Skip to main content

Advertisement

SpringerLink
Go to cart
  1. Home
  2. Journal of High Energy Physics
  3. Article
Complex Langevin simulation of a random matrix model at nonzero chemical potential
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Dynamical stabilisation of complex Langevin simulations of QCD

07 January 2019

Felipe Attanasio & Benjamin Jäger

Overview of the QCD phase diagram

19 April 2021

Jana N. Guenther

Comparison of topological charge definitions in Lattice QCD

15 May 2020

Constantia Alexandrou, Andreas Athenodorou, … Falk Zimmermann

Complex Langevin calculations in QCD at finite density

22 October 2020

Yuta Ito, Hideo Matsufuru, … Shoichiro Tsutsui

Analytic Continuation in Lattice QC2D

01 July 2021

A. Begun, V. G. Bornyakov, … V. A. Goy

Complex Langevin simulations and the QCD phase diagram: recent developments

06 October 2020

Felipe Attanasio, Benjamin Jäger & Felix P. G. Ziegler

Stochastic computation of g − 2 in QED

14 May 2021

Ryuichiro Kitano, Hiromasa Takaura & Shoji Hashimoto

Universal microscopic spectrum of the unquenched QCD Dirac operator at finite temperature

20 December 2021

G. Akemann & T. R. Würfel

Random matrix approach to three-dimensional QCD with a Chern-Simons term

07 October 2019

Takuya Kanazawa, Mario Kieburg & Jacobus J. M. Verbaarschot

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 06 March 2018

Complex Langevin simulation of a random matrix model at nonzero chemical potential

  • J. Bloch1,
  • J. Glesaaen2,
  • J. J. M. Verbaarschot3 &
  • …
  • S. Zafeiropoulos4,5,6 

Journal of High Energy Physics volume 2018, Article number: 15 (2018) Cite this article

  • 353 Accesses

  • 22 Citations

  • 1 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

In this paper we test the complex Langevin algorithm for numerical simulations of a random matrix model of QCD with a first order phase transition to a phase of finite baryon density. We observe that a naive implementation of the algorithm leads to phase quenched results, which were also derived analytically in this article. We test several fixes for the convergence issues of the algorithm, in particular the method of gauge cooling, the shifted representation, the deformation technique and reweighted complex Langevin, but only the latter method reproduces the correct analytical results in the region where the quark mass is inside the domain of the eigenvalues. In order to shed more light on the issues of the methods we also apply them to a similar random matrix model with a milder sign problem and no phase transition, and in that case gauge cooling solves the convergence problems as was shown before in the literature.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. O. Philipsen, Lattice QCD at non-zero temperature and baryon density, in Modern perspectives in lattice QCD: quantum field theory and high performance computing. Proceedings, International School, 93rd session, Les Houches France, 3-28 August 2009, pg. 273 [arXiv:1009.4089] [INSPIRE].

  2. K. Splittorff and J.J.M. Verbaarschot, Phase of the fermion determinant at nonzero chemical potential, Phys. Rev. Lett. 98 (2007) 031601 [hep-lat/0609076] [INSPIRE].

  3. C.R. Allton et al., The QCD thermal phase transition in the presence of a small chemical potential, Phys. Rev. D 66 (2002) 074507 [hep-lat/0204010] [INSPIRE].

  4. I.M. Barbour and A.J. Bell, Complex zeros of the partition function for lattice QCD, Nucl. Phys. B 372 (1992) 385 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  5. M. D’Elia and M.-P. Lombardo, Finite density QCD via imaginary chemical potential, Phys. Rev. D 67 (2003) 014505 [hep-lat/0209146] [INSPIRE].

  6. P. de Forcrand and O. Philipsen, The QCD phase diagram for small densities from imaginary chemical potential, Nucl. Phys. B 642 (2002) 290 [hep-lat/0205016] [INSPIRE].

  7. J.B. Kogut, M.A. Stephanov, D. Toublan, J.J.M. Verbaarschot and A. Zhitnitsky, QCD-like theories at finite baryon density, Nucl. Phys. B 582 (2000) 477 [hep-ph/0001171] [INSPIRE].

  8. J.B. Kogut and D.K. Sinclair, Lattice QCD at finite isospin density at zero and finite temperature, Phys. Rev. D 66 (2002) 034505 [hep-lat/0202028] [INSPIRE].

  9. G. Parisi, On complex probabilities, Phys. Lett. B 131 (1983) 393 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  10. J.R. Klauder, Stochastic quantization, Acta Phys. Austriaca Suppl. 25 (1983) 251 [INSPIRE].

    Google Scholar 

  11. G. Aarts, E. Seiler and I.-O. Stamatescu, The complex Langevin method: when can it be trusted?, Phys. Rev. D 81 (2010) 054508 [arXiv:0912.3360] [INSPIRE].

    ADS  Google Scholar 

  12. Z. Fodor, S.D. Katz, D. Sexty and C. Török, Complex Langevin dynamics for dynamical QCD at nonzero chemical potential: a comparison with multiparameter reweighting, Phys. Rev. D 92 (2015) 094516 [arXiv:1508.05260] [INSPIRE].

    ADS  Google Scholar 

  13. J. Bloch and O. Schenk, Selected inversion as key to a stable Langevin evolution across the QCD phase boundary, in 35th International Symposium on Lattice Field Theory (Lattice 2017), Granada Spain, 18-24 June 2017 [arXiv:1707.08874] [INSPIRE].

  14. E. Seiler, D. Sexty and I.-O. Stamatescu, Gauge cooling in complex Langevin for QCD with heavy quarks, Phys. Lett. B 723 (2013) 213 [arXiv:1211.3709] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  15. D. Sexty, Simulating full QCD at nonzero density using the complex Langevin equation, Phys. Lett. B 729 (2014) 108 [arXiv:1307.7748] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  16. G. Aarts, E. Seiler, D. Sexty and I.-O. Stamatescu, Simulating QCD at nonzero baryon density to all orders in the hopping parameter expansion, Phys. Rev. D 90 (2014) 114505 [arXiv:1408.3770] [INSPIRE].

    ADS  Google Scholar 

  17. G. Aarts, E. Seiler, D. Sexty and I.-O. Stamatescu, Complex Langevin dynamics and zeroes of the fermion determinant, JHEP 05 (2017) 044 [Erratum ibid. 01 (2018) 128] [arXiv:1701.02322] [INSPIRE].

  18. M.A. Stephanov, Random matrix model of QCD at finite density and the nature of the quenched limit, Phys. Rev. Lett. 76 (1996) 4472 [hep-lat/9604003] [INSPIRE].

  19. A.D. Jackson and J.J.M. Verbaarschot, A random matrix model for chiral symmetry breaking, Phys. Rev. D 53 (1996) 7223 [hep-ph/9509324] [INSPIRE].

  20. J.C. Osborn, Universal results from an alternate random matrix model for QCD with a baryon chemical potential, Phys. Rev. Lett. 93 (2004) 222001 [hep-th/0403131] [INSPIRE].

    Article  ADS  Google Scholar 

  21. J. Bloch, F. Bruckmann, M. Kieburg, K. Splittorff and J.J.M. Verbaarschot, Subsets of configurations and canonical partition functions, Phys. Rev. D 87 (2013) 034510 [arXiv:1211.3990] [INSPIRE].

    ADS  Google Scholar 

  22. A.M. Halasz, A.D. Jackson and J.J.M. Verbaarschot, Fermion determinants in matrix models of QCD at nonzero chemical potential, Phys. Rev. D 56 (1997) 5140 [hep-lat/9703006] [INSPIRE].

  23. P.H. Damgaard, K. Splittorff and J.J.M. Verbaarschot, Microscopic spectrum of the Wilson Dirac operator, Phys. Rev. Lett. 105 (2010) 162002 [arXiv:1001.2937] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  24. G. Akemann, P.H. Damgaard, K. Splittorff and J.J.M. Verbaarschot, Spectrum of the Wilson Dirac operator at finite lattice spacings, Phys. Rev. D 83 (2011) 085014 [arXiv:1012.0752] [INSPIRE].

    ADS  Google Scholar 

  25. M. Kieburg, J.J.M. Verbaarschot and S. Zafeiropoulos, Eigenvalue density of the non-Hermitian Wilson Dirac operator, Phys. Rev. Lett. 108 (2012) 022001 [arXiv:1109.0656] [INSPIRE].

    Article  ADS  Google Scholar 

  26. M. Kieburg, J.J.M. Verbaarschot and S. Zafeiropoulos, Spectral properties of the Wilson Dirac operator and random matrix theory, Phys. Rev. D 88 (2013) 094502 [arXiv:1307.7251] [INSPIRE].

    ADS  Google Scholar 

  27. M. Kieburg, J.J.M. Verbaarschot and S. Zafeiropoulos, Dirac spectrum of the Wilson Dirac operator for QCD with two colors, Phys. Rev. D 92 (2015) 045026 [arXiv:1505.01784] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  28. K. Cichy, K. Splittorff and S. Zafeiropoulos, Twisted mass Dirac spectrum, arXiv:1612.01289 [INSPIRE].

  29. J.J.M. Verbaarschot, The spectrum of the QCD Dirac operator and chiral random matrix theory: the threefold way, Phys. Rev. Lett. 72 (1994) 2531 [hep-th/9401059] [INSPIRE].

    Article  ADS  Google Scholar 

  30. J. Bloch, J. Glesaaen, O. Philipsen, J. Verbaarschot and S. Zafeiropoulos, Complex Langevin simulations of a finite density matrix model for QCD, in 12th Conference on Quark Confinement and the Hadron Spectrum (Confinement XII), Thessaloniki Greece, 28 August-4 September 2016 [EPJ Web Conf. 137 (2017) 07030] [arXiv:1612.04621] [INSPIRE].

  31. J. Bloch, J. Glesaaen, J. Verbaarschot and S. Zafeiropoulos, Progress on complex Langevin simulations of a finite density matrix model for QCD, in 35th International Symposium on Lattice Field Theory (Lattice 2017), Granada Spain, 18-24 June 2017 [arXiv:1801.06456] [INSPIRE].

  32. E.V. Shuryak and J.J.M. Verbaarschot, Random matrix theory and spectral sum rules for the Dirac operator in QCD, Nucl. Phys. A 560 (1993) 306 [hep-th/9212088] [INSPIRE].

    Article  ADS  Google Scholar 

  33. J. Bloch, A subset solution to the sign problem in random matrix simulations, Phys. Rev. D 86 (2012) 074505 [arXiv:1205.5500] [INSPIRE].

    ADS  Google Scholar 

  34. J. Bloch, Evading the sign problem in random matrix simulations, Phys. Rev. Lett. 107 (2011) 132002 [arXiv:1103.3467] [INSPIRE].

    Article  ADS  Google Scholar 

  35. A. Mollgaard and K. Splittorff, Complex Langevin dynamics for chiral random matrix theory, Phys. Rev. D 88 (2013) 116007 [arXiv:1309.4335] [INSPIRE].

    ADS  Google Scholar 

  36. A. Mollgaard and K. Splittorff, Full simulation of chiral random matrix theory at nonzero chemical potential by complex Langevin, Phys. Rev. D 91 (2015) 036007 [arXiv:1412.2729] [INSPIRE].

    ADS  Google Scholar 

  37. K. Nagata, J. Nishimura and S. Shimasaki, Gauge cooling for the singular-drift problem in the complex Langevin method — a test in random matrix theory for finite density QCD, JHEP 07 (2016) 073 [arXiv:1604.07717] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. D. Toublan and J.J.M. Verbaarschot, Effective low-energy theories and QCD Dirac spectra, Int. J. Mod. Phys. B 15 (2001) 1404 [Ser. Adv. Quant. Many Body Theor. 3 (2000) 114] [hep-th/0001110] [INSPIRE].

  39. M.G. Alford, A. Kapustin and F. Wilczek, Imaginary chemical potential and finite fermion density on the lattice, Phys. Rev. D 59 (1999) 054502 [hep-lat/9807039] [INSPIRE].

  40. D.T. Son and M.A. Stephanov, QCD at finite isospin density, Phys. Rev. Lett. 86 (2001) 592 [hep-ph/0005225] [INSPIRE].

  41. J. Bloch, J. Mahr and S. Schmalzbauer, Complex Langevin in low-dimensional QCD: the good and the not-so-good, PoS(LATTICE 2015)158 [arXiv:1508.05252] [INSPIRE].

  42. J. Bloch, J. Meisinger and S. Schmalzbauer, Reweighted complex Langevin and its application to two-dimensional QCD, PoS(LATTICE2016)046 [arXiv:1701.01298] [INSPIRE].

  43. J. Bloch, Reweighting complex Langevin trajectories, Phys. Rev. D 95 (2017) 054509 [arXiv:1701.00986] [INSPIRE].

    ADS  Google Scholar 

  44. H. Fujii, S. Kamata and Y. Kikukawa, Performance of complex Langevin simulation in 0 + 1 dimensional massive Thirring model at finite density, arXiv:1710.08524 [INSPIRE].

  45. K. Nagata, H. Matsufuru, J. Nishimura and S. Shimasaki, Gauge cooling for the singular-drift problem in the complex Langevin method — an application to finite density QCD, PoS(LATTICE2016)067 [arXiv:1611.08077] [INSPIRE].

  46. R. Brent, An algorithm with guaranteed convergence for finding a zero of a function, in Algorithms for minimization without derivatives, ch. 4, Prentice-Hall, Englewood Cliffs NJ U.S.A., (1973).

  47. G. Aarts and K. Splittorff, Degenerate distributions in complex Langevin dynamics: one-dimensional QCD at finite chemical potential, JHEP 08 (2010) 017 [arXiv:1006.0332] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  48. G. Aarts, F.A. James, J.M. Pawlowski, E. Seiler, D. Sexty and I.-O. Stamatescu, Stability of complex Langevin dynamics in effective models, JHEP 03 (2013) 073 [arXiv:1212.5231] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Y. Ito and J. Nishimura, Comparative studies of the deformation techniques for the singular-drift problem in the complex Langevin method, in 35th International Symposium on Lattice Field Theory (Lattice 2017), Granada Spain, 18-24 June 2017 [arXiv:1710.07929] [INSPIRE].

  50. A.M. Halasz, A.D. Jackson, R.E. Shrock, M.A. Stephanov and J.J.M. Verbaarschot, On the phase diagram of QCD, Phys. Rev. D 58 (1998) 096007 [hep-ph/9804290] [INSPIRE].

  51. K. Nagata, J. Nishimura and S. Shimasaki, Complex Langevin simulation of QCD at finite density and low temperature using the deformation technique, in 35th International Symposium on Lattice Field Theory (Lattice 2017), Granada Spain, 18-24 June 2017 [arXiv:1710.07416] [INSPIRE].

  52. K. Nagata, J. Nishimura and S. Shimasaki, Argument for justification of the complex Langevin method and the condition for correct convergence, Phys. Rev. D 94 (2016) 114515 [arXiv:1606.07627] [INSPIRE].

    ADS  Google Scholar 

  53. A.M. Halasz, J.C. Osborn, M.A. Stephanov and J.J.M. Verbaarschot, Random matrices and the convergence of partition function zeros in finite density QCD, Phys. Rev. D 61 (2000) 076005 [hep-lat/9908018] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Institute for Theoretical Physics, University of Regensburg, 93040, Regensburg, Germany

    J. Bloch

  2. Department of Physics, Swansea University, Swansea, U.K.

    J. Glesaaen

  3. Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, 11794, U.S.A.

    J. J. M. Verbaarschot

  4. Institute for Theoretical Physics, Heidelberg University, Philosophenweg 12, 69120, Heidelberg, Germany

    S. Zafeiropoulos

  5. Department of Physics, The College of William & Mary, Williamsburg, VA, 23187, U.S.A.

    S. Zafeiropoulos

  6. Thomas Jefferson National Accelerator Facility, Newport News, VA, 23606, U.S.A.

    S. Zafeiropoulos

Authors
  1. J. Bloch
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. J. Glesaaen
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. J. J. M. Verbaarschot
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. S. Zafeiropoulos
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to S. Zafeiropoulos.

Additional information

ArXiv ePrint: 1712.07514

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bloch, J., Glesaaen, J., Verbaarschot, J.J.M. et al. Complex Langevin simulation of a random matrix model at nonzero chemical potential. J. High Energ. Phys. 2018, 15 (2018). https://doi.org/10.1007/JHEP03(2018)015

Download citation

  • Received: 26 December 2017

  • Accepted: 24 January 2018

  • Published: 06 March 2018

  • DOI: https://doi.org/10.1007/JHEP03(2018)015

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Lattice QCD
  • Lattice Quantum Field Theory
  • Matrix Models
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • Your US state privacy rights
  • How we use cookies
  • Your privacy choices/Manage cookies
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.