Lie n-algebras of BPS charges

Abstract

We uncover higher algebraic structures on Noether currents and BPS charges. It is known that equivalence classes of conserved currents form a Lie algebra. We show that at least for target space symmetries of higher parameterized WZW-type sigma-models this naturally lifts to a Lie (p + 1)-algebra structure on the Noether currents themselves. Applied to the Green-Schwarz-type action functionals for super p-brane sigma-models this yields super Lie (p+1)-algebra refinements of the traditional BPS brane charge extensions of supersymmetry algebras. We discuss this in the generality of higher differential geometry, where it applies also to branes with (higher) gauge fields on their worldvolume. Applied to the M5-brane sigma-model we recover and properly globalize the M-theory super Lie algebra extension of 11-dimensional superisometries by 2-brane and 5-brane charges. Passing beyond the infinitesimal Lie theory we find cohomological corrections to these charges in higher analogy to the familiar corrections for D-brane charges as they are lifted from ordinary cohomology to twisted K-theory. This supports the proposal that M-brane charges live in a twisted cohomology theory.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    R. D’Auria and P. Fré, Geometric Supergravity in D = 11 and Its Hidden Supergroup, Nucl. Phys. B 201 (1982) 101 [Erratum ibid. B 206 (1982) 496] [INSPIRE].

  2. [2]

    J.A. de Azcárraga, J.P. Gauntlett, J.M. Izquierdo and P.K. Townsend, Topological Extensions of the Supersymmetry Algebra for Extended Objects, Phys. Rev. Lett. 63 (1989) 2443 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  3. [3]

    J.A. de Azcárraga and J. Izqierdo, Lie Groups, Lie Algebras, Cohomology and Some Applications in Physics, Cambridge Monographs of Mathematical Physics, Cambridge University Press (1995).

  4. [4]

    D.V. Alekseevsky, V. Cortés, C. Devchand and A. Van Proeyen, Polyvector super-Poincaré algebras, Commun. Math. Phys. 253 (2004) 385 [hep-th/0311107] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  5. [5]

    M.F. Atiyah and G.B. Segal, Twisted k-theory and cohomology, in Nankai Tracts in Mathematics: Volume 11, World Scientific (2006) [math.KT/0510674] [INSPIRE].

  6. [6]

    J.C. Baez and C.L. Rogers, Categorified Symplectic Geometry and the String Lie 2-Algebra, Homology Homotopy Appl. 12 (2010) 221 [arXiv:0901.4721] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  7. [7]

    G. Barnich, R. Fulp, T. Lada and J. Stasheff, The sh Lie structure of Poisson brackets in field theory, Commun. Math. Phys. 191 (1998) 585 [hep-th/9702176] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  8. [8]

    G. Barnich and M. Henneaux, Isomorphisms between the Batalin-Vilkovisky anti-bracket and the Poisson bracket, J. Math. Phys. 37 (1996) 5273 [hep-th/9601124] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  9. [9]

    E. Bergshoeff, E. Sezgin and P.K. Townsend, Superstring Actions in D = 3, 4, 6, 10 Curved Superspace, Phys. Lett. B 169 (1986) 191 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  10. [10]

    E. Bergshoeff, E. Sezgin and P.K. Townsend, Supermembranes and Eleven-Dimensional Supergravity, Phys. Lett. B 189 (1987) 75 [INSPIRE] http://streaming.ictp.trieste.it/preprints/P/87/010.pdf.

  11. [11]

    J.-L. Brylinski, Loop spaces, Characteristic Classes and Geometric Quantization, Birkhäuser (1993).

  12. [12]

    A.K. Callister and D.J. Smith, Topological BPS charges in 10-dimensional and 11-dimensional supergravity, Phys. Rev. D 78 (2008) 065042 [arXiv:0712.3235] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  13. [13]

    C. Chryssomalakos, J.A. de Azcárraga, J.M. Izquierdo and J.C. Perez Bueno, The Geometry of branes and extended superspaces, Nucl. Phys. B 567 (2000) 293 [hep-th/9904137] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  14. [14]

    L. Dickey, Soliton equations and Hamiltonian systems, Advanced Series in Mathematical Physics, volume 26, World Scientific (1991).

  15. [15]

    M. Ferraris, M. Palese and E. Winterroth, Local variational problems and conservation laws, Differ. Geom. Appl. 29 (2011) S80.

    MathSciNet  Article  MATH  Google Scholar 

  16. [16]

    D. Fiorenza, C.L. Rogers and U. Schreiber, Higher U(1)-gerbe connections in geometric prequantization, Rev. Math. Phys. 28 (2016) 1650012 [arXiv:1304.0236] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  17. [17]

    D. Fiorenza, C.L. Rogers and U. Schreiber, L -algebras of local observables from higher prequantum bundles, Homology Homotopy Appl. 16 (2014) 107 [arXiv:1304.6292].

    MathSciNet  Article  MATH  Google Scholar 

  18. [18]

    D. Fiorenza, H. Sati and U. Schreiber, Extended higher cup-product Chern-Simons theories, J. Geom. Phys. 74 (2013) 130 [arXiv:1207.5449] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  19. [19]

    D. Fiorenza, H. Sati and U. Schreiber, The E 8 Moduli 3-Stack of the C-Field in M-theory, Commun. Math. Phys. 333 (2015) 117 [arXiv:1202.2455] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  20. [20]

    D. Fiorenza, H. Sati and U. Schreiber, A higher stacky perspective on Chern-Simons theory, in Mathematical Aspects of Quantum Field Theories, D. Calaque and T. Strobl eds., Springer International Publishing (2014) [arXiv:1301.2580] [INSPIRE].

  21. [21]

    D. Fiorenza, H. Sati and U. Schreiber, Super Lie n-algebra extensions, higher WZW models and super p-branes with tensor multiplet fields, Int. J. Geom. Meth. Mod. Phys. 12 (2015) 1550018 [arXiv:1308.5264] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  22. [22]

    D. Fiorenza, H. Sati and U. Schreiber, The Wess-Zumino-Witten term of the M5-brane and differential cohomotopy, J. Math. Phys. 56 (2015) 102301 [arXiv:1506.07557] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  23. [23]

    M. Henneaux and L. Mezincescu, A σ-model Interpretation of Green-Schwarz Covariant Superstring Action, Phys. Lett. B 152 (1985) 340 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  24. [24]

    C.M. Hull, Gravitational duality, branes and charges, Nucl. Phys. B 509 (1998) 216 [hep-th/9705162] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  25. [25]

    T. Lada and J. Stasheff, Introduction to SH Lie algebras for physicists, Int. J. Theor. Phys. 32 (1993) 1087 [hep-th/9209099] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  26. [26]

    J.M. Maldacena, G.W. Moore and N. Seiberg, D-brane instantons and k-theory charges, JHEP 11 (2001) 062 [hep-th/0108100] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  27. [27]

    M. Markl and S. Shnider, Differential Operator Endomorphisms of an Euler-Lagrange Complex, Contemp. Math. 231 (1999) MR1707343 [math.DG/9808105] [INSPIRE].

  28. [28]

    J. Mickelsson, Current Algebras and Groups, Springer (1989).

  29. [29]

    D. Pavlov, D. Berwick-Evans and P. Boavida de Brito, Concordance theory for homotopy sheaves, in preparation.

  30. [30]

    A. Pressley and G.B. Segal, Loop groups, Oxford University Press (1988).

  31. [31]

    P. Ritter and C. Sämann, Lie 2-algebra models, JHEP 04 (2014) 066 [arXiv:1308.4892] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  32. [32]

    C.L. Rogers, L algebras from multisymplectic geometry, Lett. Math. Phys. 100 (2012) 29 [arXiv:1005.2230] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  33. [33]

    H. Sati, Duality-symmetry and the form-fields in M-theory, JHEP 06 (2006) 062 [hep-th/0509046] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  34. [34]

    H. Sati, An Approach to anomalies in M-theory via KSpin, J. Geom. Phys. 58 (2008) 387 [arXiv:0705.3484] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  35. [35]

    H. Sati, Geometric and topological structures related to M-branes, Proc. Symp. Pure Math. 81 (2010) 181 [arXiv:1001.5020] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  36. [36]

    H. Sati, U. Schreiber and J. Stasheff, L algebra connections and applications to String- and Chern-Simons n-transport, in Recent developments in QFT, Birkhäuser (2009), pp. 303-424 [arXiv:0801.3480] [INSPIRE].

  37. [37]

    G.B. Segal, Loop groups, Lect. Notes Math. 1111 (1984) 155 http://people.mpim-bonn.mpg.de/zagier/files/doi/10.1007/BFb0084581/chapter08.pdf.

  38. [38]

    U. Schreiber, Differential cohomology in a cohesive infinity-topos, arXiv:1310.7930 [INSPIRE].

  39. [39]

    U. Schreiber, Structure theory for higher WZW terms, in Flavors of cohomology, Pittsburgh, U.S.A., 3-5 June (2015) http://ncatlab.org/schreiber/show/Structure+Theory+for+Higher+WZW+Terms.

  40. [40]

    D.P. Sorokin and P.K. Townsend, M Theory superalgebra from the M five-brane, Phys. Lett. B 412 (1997) 265 [hep-th/9708003] [INSPIRE].

    ADS  Article  Google Scholar 

  41. [41]

    P.K. Townsend, p-brane democracy, in Particles, Strings and Cosmology, J. Bagger, G. Domokos, A Falk and S. Kovesi-Domokos eds., World Scientific (1996), pp. 271-285 [hep-th/9507048] [INSPIRE].

  42. [42]

    I.S. Krasil’shchik et al., Symmetries and conservation laws for differential equations of mathematical physics, Translations of Mathematical Monographs, volume 182, AMS (1999).

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Urs Schreiber.

Additional information

ArXiv ePrint: 1507.08692

On leave at Bonn (Mathematics Institute of the Academy, Žitna 25, Praha 1, 115 67 Czech Republic).

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sati, H., Schreiber, U. Lie n-algebras of BPS charges. J. High Energ. Phys. 2017, 87 (2017). https://doi.org/10.1007/JHEP03(2017)087

Download citation

Keywords

  • Differential and Algebraic Geometry
  • p-branes