Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Tensor Galileons and gravity

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 13 March 2017
  • Volume 2017, article number 70, (2017)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Tensor Galileons and gravity
Download PDF
  • Athanasios Chatzistavrakidis1,
  • Fech Scen Khoo2,
  • Diederik Roest1 &
  • …
  • Peter Schupp2 
  • 406 Accesses

  • 16 Citations

  • 1 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

The particular structure of Galileon interactions allows for higher-derivative terms while retaining second order field equations for scalar fields and Abelian p-forms. In this work we introduce an index-free formulation of these interactions in terms of two sets of Grassmannian variables. We employ this to construct Galileon interactions for mixed-symmetry tensor fields and coupled systems thereof. We argue that these tensors are the natural generalization of scalars with Galileon symmetry, similar to p-forms and scalars with a shift-symmetry. The simplest case corresponds to linearised gravity with Lovelock invariants, relating the Galileon symmetry to diffeomorphisms. Finally, we examine the coupling of a mixed-symmetry tensor to gravity, and demonstrate in an explicit example that the inclusion of appropriate counterterms retains second order field equations.

Article PDF

Download to read the full article text

Similar content being viewed by others

The special Galileon as Goldstone of diffeomorphisms

Article Open access 18 January 2021

A Generalization of Gravity

Article 18 July 2015

Graded Geometry, Tensor Galileons and Duality

Article 01 September 2020
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. M. Ostrogradsky, Mémoires sur les équations différentielles, relatives au problème des isopérimètres (in French), Mem. Acad. St. Petersburg VI 4 (1850) 385 [INSPIRE].

  2. M. Zumalacárregui and J. García-Bellido, Transforming gravity: from derivative couplings to matter to second-order scalar-tensor theories beyond the Horndeski Lagrangian, Phys. Rev. D 89 (2014) 064046 [arXiv:1308.4685] [INSPIRE].

  3. J. Gleyzes, D. Langlois, F. Piazza and F. Vernizzi, Healthy theories beyond Horndeski, Phys. Rev. Lett. 114 (2015) 211101 [arXiv:1404.6495] [INSPIRE].

    Article  ADS  Google Scholar 

  4. C. Deffayet, G. Esposito-Farese and D.A. Steer, Counting the degrees of freedom of generalized galileons, Phys. Rev. D 92 (2015) 084013 [arXiv:1506.01974] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  5. J. Ben Achour, M. Crisostomi, K. Koyama, D. Langlois, K. Noui and G. Tasinato, Degenerate higher order scalar-tensor theories beyond Horndeski up to cubic order, JHEP 12 (2016) 100 [arXiv:1608.08135] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  6. H. Motohashi, K. Noui, T. Suyama, M. Yamaguchi and D. Langlois, Healthy degenerate theories with higher derivatives, JCAP 07 (2016) 033 [arXiv:1603.09355] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  7. R. Klein and D. Roest, Exorcising the Ostrogradsky ghost in coupled systems, JHEP 07 (2016) 130 [arXiv:1604.01719] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  8. D. Lovelock, The Einstein tensor and its generalizations, J. Math. Phys. 12 (1971) 498 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. A. Nicolis, R. Rattazzi and E. Trincherini, The galileon as a local modification of gravity, Phys. Rev. D 79 (2009) 064036 [arXiv:0811.2197] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  10. C. de Rham and A.J. Tolley, DBI and the galileon reunited, JCAP 05 (2010) 015 [arXiv:1003.5917] [INSPIRE].

    Article  Google Scholar 

  11. C. Deffayet, S. Deser and G. Esposito-Farese, Generalized galileons: all scalar models whose curved background extensions maintain second-order field equations and stress-tensors, Phys. Rev. D 80 (2009) 064015 [arXiv:0906.1967] [INSPIRE].

    ADS  Google Scholar 

  12. C. Deffayet, X. Gao, D.A. Steer and G. Zahariade, From k-essence to generalised galileons, Phys. Rev. D 84 (2011) 064039 [arXiv:1103.3260] [INSPIRE].

    ADS  Google Scholar 

  13. C. Deffayet, G. Esposito-Farese and A. Vikman, Covariant galileon, Phys. Rev. D 79 (2009) 084003 [arXiv:0901.1314] [INSPIRE].

    ADS  Google Scholar 

  14. G.W. Horndeski, Second-order scalar-tensor field equations in a four-dimensional space, Int. J. Theor. Phys. 10 (1974) 363 [INSPIRE].

    Article  MathSciNet  Google Scholar 

  15. C. Deffayet, S. Deser and G. Esposito-Farese, Arbitrary p-form galileons, Phys. Rev. D 82 (2010) 061501 [arXiv:1007.5278] [INSPIRE].

    ADS  Google Scholar 

  16. C. Deffayet, S. Mukohyama and V. Sivanesan, On p-form theories with gauge invariant second order field equations, Phys. Rev. D 93 (2016) 085027 [arXiv:1601.01287] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  17. M. Hull, K. Koyama and G. Tasinato, Covariantized vector galileons, Phys. Rev. D 93 (2016) 064012 [arXiv:1510.07029] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  18. C. Deffayet and D.A. Steer, A formal introduction to Horndeski and galileon theories and their generalizations, Class. Quant. Grav. 30 (2013) 214006 [arXiv:1307.2450] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. T. Curtright, Generalized gauge fields, Phys. Lett. B 165 (1985) 304 [INSPIRE].

    Article  ADS  Google Scholar 

  20. P.C. West, The IIA, IIB and eleven-dimensional theories and their common E 11 origin, Nucl. Phys. B 693 (2004) 76 [hep-th/0402140] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. P.C. West, E 11 origin of brane charges and U-duality multiplets, JHEP 08 (2004) 052 [hep-th/0406150] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  22. P.P. Cook and P.C. West, Charge multiplets and masses for E 11, JHEP 11 (2008) 091 [arXiv:0805.4451] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  23. F. Riccioni and P.C. West, Dual fields and E 11, Phys. Lett. B 645 (2007) 286 [hep-th/0612001] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. E.A. Bergshoeff and F. Riccioni, D-brane Wess-Zumino terms and U-duality, JHEP 11 (2010) 139 [arXiv:1009.4657] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. E.A. Bergshoeff and F. Riccioni, String solitons and T-duality, JHEP 05 (2011) 131 [arXiv:1102.0934] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. E.A. Bergshoeff, F. Riccioni and L. Romano, Branes, weights and central charges, JHEP 06 (2013) 019 [arXiv:1303.0221] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. A. Chatzistavrakidis, F.F. Gautason, G. Moutsopoulos and M. Zagermann, Effective actions of nongeometric five-branes, Phys. Rev. D 89 (2014) 066004 [arXiv:1309.2653] [INSPIRE].

    ADS  Google Scholar 

  28. A. Chatzistavrakidis and F.F. Gautason, U-dual branes and mixed symmetry tensor fields, Fortsch. Phys. 62 (2014) 743 [arXiv:1404.7635] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. E.A. Bergshoeff, V.A. Penas, F. Riccioni and S. Risoli, Non-geometric fluxes and mixed-symmetry potentials, JHEP 11 (2015) 020 [arXiv:1508.00780] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  30. P. de Medeiros and C. Hull, Exotic tensor gauge theory and duality, Commun. Math. Phys. 235 (2003) 255 [hep-th/0208155] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. P. de Medeiros and C. Hull, Geometric second order field equations for general tensor gauge fields, JHEP 05 (2003) 019 [hep-th/0303036] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  32. M. Dubois-Violette and M. Henneaux, Tensor fields of mixed Young symmetry type and N complexes, Commun. Math. Phys. 226 (2002) 393 [math/0110088] [INSPIRE].

  33. M. Dubois-Violette and M. Henneaux, Generalized cohomology for irreducible tensor fields of mixed Young symmetry type, Lett. Math. Phys. 49 (1999) 245 [math/9907135] [INSPIRE].

  34. J.M. Ezquiaga, J. García-Bellido and M. Zumalacárregui, Towards the most general scalar-tensor theories of gravity: a unified approach in the language of differential forms, Phys. Rev. D 94 (2016) 024005 [arXiv:1603.01269] [INSPIRE].

  35. N. Boulanger, T. Damour, L. Gualtieri and M. Henneaux, Inconsistency of interacting, multigraviton theories, Nucl. Phys. B 597 (2001) 127 [hep-th/0007220] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  36. C. Aragone and S. Deser, Consistency problems of spin-2 gravity coupling, Nuovo Cim. B 57 (1980) 33 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  37. A. Hindawi, B.A. Ovrut and D. Waldram, Consistent spin two coupling and quadratic gravitation, Phys. Rev. D 53 (1996) 5583 [hep-th/9509142] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  38. J. Khoury, J.-L. Lehners and B.A. Ovrut, Supersymmetric galileons, Phys. Rev. D 84 (2011) 043521 [arXiv:1103.0003] [INSPIRE].

    ADS  Google Scholar 

  39. F. Farakos, C. Germani and A. Kehagias, On ghost-free supersymmetric galileons, JHEP 11 (2013) 045 [arXiv:1306.2961] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. A. Padilla, P.M. Saffin and S.-Y. Zhou, Bi-galileon theory I: motivation and formulation, JHEP 12 (2010) 031 [arXiv:1007.5424] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. A. Padilla, P.M. Saffin and S.-Y. Zhou, Multi-galileons, solitons and Derrick’s theorem, Phys. Rev. D 83 (2011) 045009 [arXiv:1008.0745] [INSPIRE].

    ADS  Google Scholar 

  42. N. Deruelle and J. Madore, On the quasilinearity of the Einstein-“Gauss-Bonnet” gravity field equations, gr-qc/0305004 [INSPIRE].

  43. K. Van Acoleyen and J. Van Doorsselaere, Galileons from Lovelock actions, Phys. Rev. D 83 (2011) 084025 [arXiv:1102.0487] [INSPIRE].

    ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands

    Athanasios Chatzistavrakidis & Diederik Roest

  2. Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759, Bremen, Germany

    Fech Scen Khoo & Peter Schupp

Authors
  1. Athanasios Chatzistavrakidis
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Fech Scen Khoo
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Diederik Roest
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Peter Schupp
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Athanasios Chatzistavrakidis.

Additional information

ArXiv ePrint: 1612.05991

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatzistavrakidis, A., Khoo, F.S., Roest, D. et al. Tensor Galileons and gravity. J. High Energ. Phys. 2017, 70 (2017). https://doi.org/10.1007/JHEP03(2017)070

Download citation

  • Received: 11 January 2017

  • Accepted: 21 February 2017

  • Published: 13 March 2017

  • DOI: https://doi.org/10.1007/JHEP03(2017)070

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Classical Theories of Gravity
  • Gauge Symmetry
  • Global Symmetries
  • Field Theories in Higher Dimensions
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

Not affiliated

Springer Nature

© 2024 Springer Nature