Skip to main content

Advertisement

SpringerLink
Go to cart
  1. Home
  2. Journal of High Energy Physics
  3. Article
Higgs mass from neutrino-messenger mixing
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Emergent neutrinos from heavy messengers

22 June 2022

Pascal Anastasopoulos & Elias Kiritsis

Extended gauge mediation in the NMSSM with displaced LHC signals

28 January 2019

Marcin Badziak, Nishita Desai, … Robert Ziegler

Radiative muon mass models and (g − 2)μ

19 May 2021

Michael J. Baker, Peter Cox & Raymond R. Volkas

A radiatively induced neutrino mass model with hidden local U(1) and LFV processes ℓi → ℓjγ, μ → eZ′ and μe → ee

05 January 2021

Takaaki Nomura, Hiroshi Okada & Yuichi Uesaka

Electroweak signatures of gauge-mediated supersymmetry breaking in multiple hidden sectors

25 January 2022

Diogo Buarque Franzosi, Gabriele Ferretti, … Sara Strandberg

Muon g − 2 in Higgs-anomaly mediation

25 June 2020

Tsutomu T. Yanagida, Wen Yin & Norimi Yokozaki

Muon g-2 and Other Observables in Models with Extended Higgs and Matter Sectors $${}^{\#}$$

01 April 2022

Radovan Dermisek

Lepton number violating operators with standard model gauge fields: a survey of neutrino masses from 3-loops and their link to dark matter

13 November 2020

Michael Gustafsson, José Miguel No & Maximiliano A. Rivera

The full lepton flavor of the littlest Higgs model with T-parity

25 July 2019

Francisco del Aguila, Lluis Ametller, … Roberto Vega-Morales

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 06 March 2017

Higgs mass from neutrino-messenger mixing

  • Pritibhajan Byakti1,3,
  • Charanjit K. Khosa1,
  • V. S. Mummidi2 &
  • …
  • Sudhir K. Vempati1 

Journal of High Energy Physics volume 2017, Article number: 28 (2017) Cite this article

  • 256 Accesses

  • 1 Citations

  • 4 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

The discovery of the Higgs particle at 125 GeV has put strong constraints on minimal messenger models of gauge mediation, pushing the stop masses into the multi-TeV regime. Extensions of these models with matter-messenger mixing terms have been proposed to generate a large trilinear parameter, A t , relaxing these constraints. The detailed survey of these models [1, 2] so far considered messenger mixings with only MSSM superfields. In the present work, we extend the survey to MSSM with inverse-seesaw mechanism. The neutrino-sneutrino corrections to the Higgs mass in the inverse seesaw model are not significant in the minimal gauge mediation model, unless one considers messenger-matter interaction terms. We classify all possible models with messenger-matter interactions and perform thorough numerical analysis to find out the promising models. We found that out of the 17 possible models 9 of them can lead to Higgs mass within the observed value without raising the sfermion masses significantly. The successful models have stop masses ∼1.5 TeV with small or negligible mixing and yet a light CP even Higgs at 125 GeV.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. P. Byakti and T.S. Ray, Burgeoning the Higgs mass to 125 GeV through messenger-matter interactions in GMSB models, JHEP 05 (2013) 055 [arXiv:1301.7605] [INSPIRE].

    Article  ADS  Google Scholar 

  2. J.A. Evans and D. Shih, Surveying extended GMSB models with m h = 125 GeV, JHEP 08 (2013) 093 [arXiv:1303.0228] [INSPIRE].

    Article  ADS  Google Scholar 

  3. A. Salam and J.A. Strathdee, Supergauge transformations, Nucl. Phys. B 76 (1974) 477 [INSPIRE].

    Article  ADS  Google Scholar 

  4. P. Fayet and S. Ferrara, Supersymmetry, Phys. Rept. 32 (1977) 249 [INSPIRE].

    Article  ADS  Google Scholar 

  5. H.P. Nilles, Supersymmetry, supergravity and particle physics, Phys. Rept. 110 (1984) 1 [INSPIRE].

    Article  ADS  Google Scholar 

  6. J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton Univ. Pr., Princeton U.S.A., (1992) [INSPIRE].

  7. S.P. Martin, A supersymmetry primer, Adv. Ser. Direct. High Energy Phys. 18 (1998) 1 [Adv. Ser. Direct. High Energy Phys. 21 (2010) 1] [hep-ph/9709356] [INSPIRE].

  8. P. Fayet, Supersymmetry and weak, electromagnetic and strong interactions, Phys. Lett. B 64 (1976) 159 [INSPIRE].

    Article  ADS  Google Scholar 

  9. S.K. Vempati, Introduction to MSSM, arXiv:1201.0334 [INSPIRE].

  10. G.F. Giudice and R. Rattazzi, Theories with gauge mediated supersymmetry breaking, Phys. Rept. 322 (1999) 419 [hep-ph/9801271] [INSPIRE].

  11. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

  12. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

  13. P. Draper, P. Meade, M. Reece and D. Shih, Implications of a 125 GeV Higgs for the MSSM and low-scale SUSY breaking, Phys. Rev. D 85 (2012) 095007 [arXiv:1112.3068] [INSPIRE].

    ADS  Google Scholar 

  14. K. Intriligator and M. Sudano, General gauge mediation with gauge messengers, JHEP 06 (2010) 047 [arXiv:1001.5443] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. P. Grajek, A. Mariotti and D. Redigolo, Phenomenology of general gauge mediation in light of a 125 GeV Higgs, JHEP 07 (2013) 109 [arXiv:1303.0870] [INSPIRE].

    Article  ADS  Google Scholar 

  16. Z. Kang, T. Li, T. Liu, C. Tong and J.M. Yang, A heavy SM-like Higgs and a light stop from Yukawa-deflected gauge mediation, Phys. Rev. D 86 (2012) 095020 [arXiv:1203.2336] [INSPIRE].

    ADS  Google Scholar 

  17. A. Albaid and K.S. Babu, Higgs boson of mass 125 GeV in GMSB models with messenger-matter mixing, Phys. Rev. D 88 (2013) 055007 [arXiv:1207.1014] [INSPIRE].

    ADS  Google Scholar 

  18. T. Han and R.-J. Zhang, Direct messenger-matter interactions in gauge-mediated supersymmetry breaking models, Phys. Lett. B 428 (1998) 120 [hep-ph/9802422] [INSPIRE].

  19. N. Craig, S. Knapen, D. Shih and Y. Zhao, A complete model of low-scale gauge mediation, JHEP 03 (2013) 154 [arXiv:1206.4086] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. J.L. Evans, M. Ibe and T.T. Yanagida, Relatively heavy Higgs boson in more generic gauge mediation, Phys. Lett. B 705 (2011) 342 [arXiv:1107.3006] [INSPIRE].

    Article  ADS  Google Scholar 

  21. S.P. Martin and J.D. Wells, Implications of gauge-mediated supersymmetry breaking with vector-like quarks and a ∼ 125 GeV Higgs boson, Phys. Rev. D 86 (2012) 035017 [arXiv:1206.2956] [INSPIRE].

    ADS  Google Scholar 

  22. J.A. Casas, J.M. Moreno, S. Robles and K. Rolbiecki, Reducing the fine-tuning of gauge-mediated SUSY breaking, Eur. Phys. J. C 76 (2016) 450 [arXiv:1602.06892] [INSPIRE].

    Article  ADS  Google Scholar 

  23. R. Ding, T. Li, L. Wang and B. Zhu, Towards the natural gauge mediation, JHEP 10 (2015) 154 [arXiv:1506.00359] [INSPIRE].

    Article  ADS  Google Scholar 

  24. A. Delgado, M. Garcia-Pepin and M. Quirós, GMSB with light stops, JHEP 08 (2015) 159 [arXiv:1505.07469] [INSPIRE].

    Article  Google Scholar 

  25. T. Jeliński, SO(10) inspired extended GMSB models, PoS(CORFU2014)089 [arXiv:1505.06722] [INSPIRE].

  26. J.A. Evans, D. Shih and A. Thalapillil, Chiral flavor violation from extended gauge mediation, JHEP 07 (2015) 040 [arXiv:1504.00930] [INSPIRE].

    Article  ADS  Google Scholar 

  27. M. Backović, A. Mariotti and M. Spannowsky, Signs of tops from highly mixed stops, JHEP 06 (2015) 122 [arXiv:1504.00927] [INSPIRE].

    Article  ADS  Google Scholar 

  28. A. Basirnia, D. Egana-Ugrinovic, S. Knapen and D. Shih, 125 GeV Higgs from tree-level A-terms, JHEP 06 (2015) 144 [arXiv:1501.00997] [INSPIRE].

    Article  ADS  Google Scholar 

  29. W. Fischler and W. Tangarife, Vector-like fields, messenger mixing and the Higgs mass in gauge mediation, JHEP 05 (2014) 151 [arXiv:1310.6369] [INSPIRE].

    Article  ADS  Google Scholar 

  30. T. Jeliński, On messengers couplings in extended GMSB models, JHEP 09 (2013) 107 [arXiv:1305.6277] [INSPIRE].

    Article  ADS  Google Scholar 

  31. L. Calibbi, P. Paradisi and R. Ziegler, Gauge mediation beyond minimal flavor violation, JHEP 06 (2013) 052 [arXiv:1304.1453] [INSPIRE].

    Article  ADS  Google Scholar 

  32. V.S. Mummidi and S.K. Vempati, A little more gauge mediation and the light Higgs mass, Nucl. Phys. B 881 (2014) 181 [arXiv:1311.4280] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. K.S. Babu, I. Gogoladze, M.U. Rehman and Q. Shafi, Higgs boson mass, sparticle spectrum and little hierarchy problem in extended MSSM, Phys. Rev. D 78 (2008) 055017 [arXiv:0807.3055] [INSPIRE].

    ADS  Google Scholar 

  34. M. Endo, K. Hamaguchi, S. Iwamoto and N. Yokozaki, Higgs mass and muon anomalous magnetic moment in supersymmetric models with vector-like matters, Phys. Rev. D 84 (2011) 075017 [arXiv:1108.3071] [INSPIRE].

  35. M. Endo, K. Hamaguchi, S. Iwamoto and N. Yokozaki, Higgs mass, muon g-2 and LHC prospects in gauge mediation models with vector-like matters, Phys. Rev. D 85 (2012) 095012 [arXiv:1112.5653] [INSPIRE].

    ADS  Google Scholar 

  36. K. Nakayama and N. Yokozaki, Peccei-Quinn extended gauge-mediation model with vector-like matter, JHEP 11 (2012) 158 [arXiv:1204.5420] [INSPIRE].

    Article  ADS  Google Scholar 

  37. M. Asano, Y. Nakai and N. Yokozaki, A new scheme for NMSSM in gauge mediation, JHEP 01 (2016) 066 [arXiv:1510.08033] [INSPIRE].

    Article  ADS  Google Scholar 

  38. G. Mittag, Search for a light NMSSM Higgs boson in the b-quark final state at the LHC, Ph.D. thesis, DESY-THESIS-2015-029, Dept. Phys., U. Hamburg, Hamburg Germany, (2015) [INSPIRE].

  39. K. Kowalska, J. Pawelczyk and E.M. Sessolo, Flavored gauge mediation in the Peccei-Quinn NMSSM, JHEP 12 (2015) 148 [arXiv:1508.04142] [INSPIRE].

    ADS  Google Scholar 

  40. F. Domingo, A new tool for the study of the CP-violating NMSSM, JHEP 06 (2015) 052 [arXiv:1503.07087] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  41. M. Cahill-Rowley, J. Gainer, J. Hewett and T. Rizzo, Towards a supersymmetric description of the Fermi galactic center excess, JHEP 02 (2015) 057 [arXiv:1409.1573] [INSPIRE].

    Article  ADS  Google Scholar 

  42. U. Ellwanger and A.M. Teixeira, NMSSM with a singlino LSP: possible challenges for searches for supersymmetry at the LHC, JHEP 10 (2014) 113 [arXiv:1406.7221] [INSPIRE].

    Article  ADS  Google Scholar 

  43. P. Athron, J.-H. Park, D. Stöckinger and A. Voigt, FlexibleSUSY — a spectrum generator generator for supersymmetric models, Comput. Phys. Commun. 190 (2015) 139 [arXiv:1406.2319] [INSPIRE].

    Article  ADS  Google Scholar 

  44. B.C. Allanach, P. Athron, L.C. Tunstall, A. Voigt and A.G. Williams, Next-to-minimal SOFTSUSY, Comput. Phys. Commun. 185 (2014) 2322 [arXiv:1311.7659] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  45. T.T. Yanagida, N. Yokozaki and K. Yonekura, Higgs boson mass in low scale gauge mediation models, JHEP 10 (2012) 017 [arXiv:1206.6589] [INSPIRE].

    Article  ADS  Google Scholar 

  46. A. de La Puente and W. Tangarife, A singlet extension of the MSSM with a dark matter portal, JHEP 07 (2014) 087 [arXiv:1309.6359] [INSPIRE].

    Article  Google Scholar 

  47. M.E. Krauss, W. Porod and F. Staub, SO(10) inspired gauge-mediated supersymmetry breaking, Phys. Rev. D 88 (2013) 015014 [arXiv:1304.0769] [INSPIRE].

    ADS  Google Scholar 

  48. A.M. Iyer, V.S. Mummidi and S.K. Vempati, Gravitational rescue of minimal gauge mediation, Int. J. Mod. Phys. A 31 (2016) 1650045 [arXiv:1408.4462] [INSPIRE].

    Article  ADS  Google Scholar 

  49. A. Elsayed, S. Khalil and S. Moretti, Higgs mass corrections in the SUSY B-L model with inverse seesaw, Phys. Lett. B 715 (2012) 208 [arXiv:1106.2130] [INSPIRE].

    Article  ADS  Google Scholar 

  50. P. Draper and H.E. Haber, Decoupling of the right-handed neutrino contribution to the Higgs mass in supersymmetric models, Eur. Phys. J. C 73 (2013) 2522 [arXiv:1304.6103] [INSPIRE].

    Article  ADS  Google Scholar 

  51. J. Guo, Z. Kang, T. Li and Y. Liu, Higgs boson mass and complex sneutrino dark matter in the supersymmetric inverse seesaw models, JHEP 02 (2014) 080 [arXiv:1311.3497] [INSPIRE].

    Article  ADS  Google Scholar 

  52. E.J. Chun, V.S. Mummidi and S.K. Vempati, Anatomy of Higgs mass in supersymmetric inverse seesaw models, Phys. Lett. B 736 (2014) 470 [arXiv:1405.5478] [INSPIRE].

    Article  ADS  Google Scholar 

  53. L. Calibbi, L. Ferretti, A. Romanino and R. Ziegler, Gauge coupling unification, the GUT scale and magic fields, Phys. Lett. B 672 (2009) 152 [arXiv:0812.0342] [INSPIRE].

    Article  ADS  Google Scholar 

  54. P. Byakti and D. Ghosh, Magic messengers in gauge mediation and signal for 125 GeV boosted Higgs boson, Phys. Rev. D 86 (2012) 095027 [arXiv:1204.0415] [INSPIRE].

    ADS  Google Scholar 

  55. P. Meade, N. Seiberg and D. Shih, General gauge mediation, Prog. Theor. Phys. Suppl. 177 (2009) 143 [arXiv:0801.3278] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  56. T.T. Dumitrescu, Z. Komargodski, N. Seiberg and D. Shih, General messenger gauge mediation, JHEP 05 (2010) 096 [arXiv:1003.2661] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. M. Dine, Y. Nir and Y. Shirman, Variations on minimal gauge mediated supersymmetry breaking, Phys. Rev. D 55 (1997) 1501 [hep-ph/9607397] [INSPIRE].

  58. G.R. Dvali, G.F. Giudice and A. Pomarol, The μ problem in theories with gauge mediated supersymmetry breaking, Nucl. Phys. B 478 (1996) 31 [hep-ph/9603238] [INSPIRE].

  59. A. Delgado, G.F. Giudice and P. Slavich, Dynamical μ term in gauge mediation, Phys. Lett. B 653 (2007) 424 [arXiv:0706.3873] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  60. Z. Komargodski and N. Seiberg, μ and general gauge mediation, JHEP 03 (2009) 072 [arXiv:0812.3900] [INSPIRE].

  61. Z. Chacko and E. Ponton, Yukawa deflected gauge mediation, Phys. Rev. D 66 (2002) 095004 [hep-ph/0112190] [INSPIRE].

  62. G.F. Giudice and R. Rattazzi, Extracting supersymmetry breaking effects from wave function renormalization, Nucl. Phys. B 511 (1998) 25 [hep-ph/9706540] [INSPIRE].

  63. A. Mariotti, M. Backovic and M. Spannowsky, Signs of tops from highly mixed stops, PoS(PLANCK 2015)080 [INSPIRE].

  64. L. Calibbi, P. Paradisi and R. Ziegler, Lepton flavor violation in flavored gauge mediation, Eur. Phys. J. C 74 (2014) 3211 [arXiv:1408.0754] [INSPIRE].

    Article  Google Scholar 

  65. R.N. Mohapatra and P.B. Pal, Massive neutrinos in physics and astrophysics. Second edition, World Sci. Lect. Notes Phys. 60 (1998) 1 [World Sci. Lect. Notes Phys. 72 (2004) 1] [INSPIRE].

  66. R.N. Mohapatra and J.W.F. Valle, Neutrino mass and baryon number nonconservation in superstring models, Phys. Rev. D 34 (1986) 1642 [INSPIRE].

    ADS  Google Scholar 

  67. I. Gogoladze, B. He and Q. Shafi, Inverse seesaw in NMSSM and 126 GeV Higgs boson, Phys. Lett. B 718 (2013) 1008 [arXiv:1209.5984] [INSPIRE].

    Article  ADS  Google Scholar 

  68. F. del Aguila, J. de Blas and M. Pérez-Victoria, Effects of new leptons in electroweak precision data, Phys. Rev. D 78 (2008) 013010 [arXiv:0803.4008] [INSPIRE].

    ADS  Google Scholar 

  69. S.R. Coleman and E.J. Weinberg, Radiative corrections as the origin of spontaneous symmetry breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].

    ADS  Google Scholar 

  70. CMS collaboration, Search for supersymmetry in events with photons and missing transverse energy in pp collisions at 13 TeV, submitted to Phys. Lett. B (2016) [arXiv:1611.06604] [INSPIRE].

  71. ATLAS collaboration, Search for photonic signatures of gauge-mediated supersymmetry in 8 TeV pp collisions with the ATLAS detector, Phys. Rev. D 92 (2015) 072001 [arXiv:1507.05493] [INSPIRE].

  72. M. Viel, J. Lesgourgues, M.G. Haehnelt, S. Matarrese and A. Riotto, Constraining warm dark matter candidates including sterile neutrinos and light gravitinos with WMAP and the Lyman-α forest, Phys. Rev. D 71 (2005) 063534 [astro-ph/0501562] [INSPIRE].

  73. M. Kawasaki, F. Takahashi and T.T. Yanagida, Gravitino overproduction in inflaton decay, Phys. Lett. B 638 (2006) 8 [hep-ph/0603265] [INSPIRE].

  74. D. Chowdhury, R. Garani and S.K. Vempati, SuSeFLAV: a program for calculating supersymmetric spectra and lepton flavor violation, Pramana 79 (2012) 887 [arXiv:1112.4403] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Center for High Energy Physics, Indian Institute of Science, C.V. Raman Ave, Bangalore, 560012, India

    Pritibhajan Byakti, Charanjit K. Khosa & Sudhir K. Vempati

  2. Harish-Chandra Research Institute, Chhatnag Road, Jhusi, Allahabad, 211019, India

    V. S. Mummidi

  3. Department of Theoretical Physics, Indian Association for the Cultivation of Science, 2A & 2B Raja S.C. Mullick Road, Kolkata, 700 032, India

    Pritibhajan Byakti

Authors
  1. Pritibhajan Byakti
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Charanjit K. Khosa
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. V. S. Mummidi
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Sudhir K. Vempati
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Charanjit K. Khosa.

Additional information

ArXiv ePrint: 1607.03447

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Byakti, P., Khosa, C.K., Mummidi, V.S. et al. Higgs mass from neutrino-messenger mixing. J. High Energ. Phys. 2017, 28 (2017). https://doi.org/10.1007/JHEP03(2017)028

Download citation

  • Received: 22 July 2016

  • Revised: 16 January 2017

  • Accepted: 21 February 2017

  • Published: 06 March 2017

  • DOI: https://doi.org/10.1007/JHEP03(2017)028

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Supersymmetry Phenomenology
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • Your US state privacy rights
  • How we use cookies
  • Your privacy choices/Manage cookies
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.