Skip to main content

Future collider signatures of the possible 750 GeV state

A preprint version of the article is available at arXiv.

Abstract

If the recent indications of a possible state Φ with mass ~ 750 GeV decaying into two photons reported by ATLAS and CMS in LHC collisions at 13 TeV were to become confirmed, the prospects for future collider physics at the LHC and beyond would be affected radically, as we explore in this paper. Even minimal scenarios for the Φ resonance and its γγ decays require additional particles with masses \( \gtrsim \frac{1}{2}{m}_{\Phi} \). We consider here two benchmark scenarios that exemplify the range of possibilities: one in which Φ is a singlet scalar or pseudoscalar boson whose production and γγ decays are due to loops of coloured and charged fermions, and another benchmark scenario in which Φ is a superposition of (nearly) degenerate CP-even and CP-odd Higgs bosons in a (possibly supersymmetric) two-Higgs doublet model also with additional fermions to account for the γγ decay rate. We explore the implications of these benchmark scenarios for the production of Φ and its new partners at colliders in future runs of the LHC and beyond, at higher-energy pp colliders and at e + e and γγ colliders, with emphasis on the bosonic partners expected in the doublet scenario and the fermionic partners expected in both scenarios.

References

  1. J. Olsen, CMS physics results from Run 2, presented at CERN, https://indico.cern.ch/event/442432/, Geneva Switzerland December 15 2015.

  2. M. Kado, ATLAS physics results from Run 2, presented at CERN, https://indico.cern.ch/event/442432/, Geneva Switzerland December 15 2015.

  3. ATLAS collaboration, Search for resonances decaying to photon pairs in 3.2 fb−1 of pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2015-081, CERN, Geneva Switzerland (2015).

  4. CMS collaboration, Search for new physics in high mass diphoton events in proton-proton collisions at \( \sqrt{s}=13 \) TeV, CMS-PAS-EXO-15-004, CERN, Geneva Switzerland (2015).

  5. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

  6. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

  7. L. Landau, On the angular momentum of a system of two photons, Dokl. Akad. Nauk Ser. Fiz. 60 (1948) 207 [INSPIRE].

    Google Scholar 

  8. C.-N. Yang, Selection rules for the dematerialization of a particle into two photons, Phys. Rev. 77 (1950) 242 [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  9. ATLAS collaboration, Search for new phenomena in dijet mass and angular distributions from pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Lett. B 754 (2016) 302 [arXiv:1512.01530] [INSPIRE].

  10. ATLAS collaboration, Combination of searches for W W , W Z and ZZ resonances in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Lett. B 755 (2016) 285 [arXiv:1512.05099] [INSPIRE].

  11. CMS collaboration, Search for narrow resonances decaying to dijets in proton-proton collisions at \( \sqrt{s}=13 \) TeV, Phys. Rev. Lett. 116 (2016) 071801 [arXiv:1512.01224] [INSPIRE].

  12. J. Steinberger, On the use of subtraction fields and the lifetimes of some types of meson decay, Phys. Rev. 76 (1949) 1180 [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  13. J.S. Schwinger, On gauge invariance and vacuum polarization, Phys. Rev. 82 (1951) 664 [INSPIRE].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  14. S.L. Adler, Axial vector vertex in spinor electrodynamics, Phys. Rev. 177 (1969) 2426 [INSPIRE].

    Article  ADS  Google Scholar 

  15. J.S. Bell and R. Jackiw, A PCAC puzzle: π 0γγ in the σ-model, Nuovo Cim. A 60 (1969) 47 [INSPIRE].

    Article  ADS  Google Scholar 

  16. M.S. Chanowitz and J.R. Ellis, Canonical anomalies and broken scale invariance, Phys. Lett. B 40 (1972) 397 [INSPIRE].

    Article  ADS  Google Scholar 

  17. R.J. Crewther, Nonperturbative evaluation of the anomalies in low-energy theorems, Phys. Rev. Lett. 28 (1972) 1421 [INSPIRE].

    Article  ADS  Google Scholar 

  18. J.R. Ellis, M.K. Gaillard and D.V. Nanopoulos, A phenomenological profile of the Higgs boson, Nucl. Phys. B 106 (1976) 292 [INSPIRE].

    Article  ADS  Google Scholar 

  19. H.M. Georgi, S.L. Glashow, M.E. Machacek and D.V. Nanopoulos, Higgs bosons from two gluon annihilation in proton proton collisions, Phys. Rev. Lett. 40 (1978) 692 [INSPIRE].

    Article  ADS  Google Scholar 

  20. M.A. Shifman, A.I. Vainshtein, M.B. Voloshin and V.I. Zakharov, Low-energy theorems for Higgs boson couplings to photons, Sov. J. Nucl. Phys. 30 (1979) 711 [Yad. Fiz. 30 (1979) 1368] [INSPIRE].

  21. ATLAS collaboration, Physics at a high-luminosity LHC with ATLAS, arXiv:1307.7292 [INSPIRE].

  22. CMS collaboration, Projected performance of an upgraded CMS detector at the LHC and HL-LHC: contribution to the Snowmass process, arXiv:1307.7135 [INSPIRE].

  23. ILC collaboration, J. Brau et al., ILC reference design report: ILC global design effort and world wide study, arXiv:0712.1950 [INSPIRE].

  24. ILC collaboration, G. Aarons et al., International Linear Collider reference design report volume 2: physics at the ILC, arXiv:0709.1893 [INSPIRE].

  25. N. Phinney, N. Toge and N. Walker, ILC reference design report volume 3 — accelerator, arXiv:0712.2361 [INSPIRE].

  26. ILC collaboration, T. Behnke et al., ILC reference design report volume 4 — detectors, arXiv:0712.2356 [INSPIRE].

  27. L. Linssen, A. Miyamoto, M. Stanitzki and H. Weerts, Physics and detectors at CLIC: CLIC conceptual design report, arXiv:1202.5940 [INSPIRE].

  28. TLEP Design Study Working Group collaboration, M. Bicer et al., First look at the physics case of TLEP, JHEP 01 (2014) 164 [arXiv:1308.6176] [INSPIRE].

  29. Circular Electron Positron Collider (CEPC) webpage, http://cepc.ihep.ac.cn/preCDR/volume.html.

  30. I.F. Ginzburg, G.L. Kotkin, S.L. Panfil, V.G. Serbo and V.I. Telnov, Colliding γe and γγ beams based on the single pass e + e accelerators. 2. Polarization effects. Monochromatization improvement, Nucl. Instrum. Meth. A 219 (1984) 5 [INSPIRE].

  31. D.L. Borden, D.A. Bauer and D.O. Caldwell, Higgs boson production at a photon linear collider, Phys. Rev. D 48 (1993) 4018 [INSPIRE].

    ADS  Google Scholar 

  32. ECFA/DESY Photon Collider Working Group collaboration, B. Badelek et al., TESLA: the superconducting electron positron linear collider with an integrated X-ray laser laboratory. Technical design report. Part 6. Appendices. Chapter 1. Photon collider at TESLA, Int. J. Mod. Phys. A 19 (2004) 5097 [hep-ex/0108012] [INSPIRE].

  33. A. De Roeck, Physics at a γγ, eγ and e e option for a linear collider, hep-ph/0311138 [INSPIRE].

  34. E. Boos et al., Gold plated processes at photon colliders, Nucl. Instrum. Meth. A 472 (2001) 100 [hep-ph/0103090] [INSPIRE].

  35. D. Asner et al., Complementarity of a low-energy photon collider and LHC physics, hep-ph/0308103 [INSPIRE].

  36. M.M. Velasco et al., Photon photon and electron photon colliders with energies below a TeV, eConf C 010630 (2001) E3005 [hep-ex/0111055] [INSPIRE].

  37. D.M. Asner, J.B. Gronberg and J.F. Gunion, Detecting and studying Higgs bosons at a photon-photon collider, Phys. Rev. D 67 (2003) 035009 [hep-ph/0110320] [INSPIRE].

  38. U. Baur et al., Physics at future hadron colliders, in the proceedings of the APS/DPF/DPB Snowmmass Summer Study on the Future of Particle Physics, eConf C 010630 (2001) E4001 [hep-ph/0201227] [INSPIRE].

  39. J. Tang et al., Concept for a future super proton-proton collider, arXiv:1507.03224 [INSPIRE].

  40. Future Circular Collider study (FCC) webpage, https://fcc.web.cern.ch/Pages/default.aspx.

  41. N. Arkani-Hamed, T. Han, M. Mangano and L.-T. Wang, Physics opportunities of a 100 TeV proton-proton collider, arXiv:1511.06495 [INSPIRE].

  42. J. Ellis, S.A.R. Ellis, J. Quevillon, V. Sanz and T. You, On the interpretation of a possible ∼750 GeV particle decaying into γγ, arXiv:1512.05327 [INSPIRE].

  43. S. Knapen, T. Melia, M. Papucci and K. Zurek, Rays of light from the LHC, arXiv:1512.04928 [INSPIRE].

  44. D. Buttazzo, A. Greljo and D. Marzocca, Knocking on new physics’ door with a scalar resonance, Eur. Phys. J. C 76 (2016) 116 [arXiv:1512.04929] [INSPIRE].

    Article  ADS  Google Scholar 

  45. A. Pilaftsis, Diphoton signatures from heavy axion decays at the CERN Large Hadron Collider, Phys. Rev. D 93 (2016) 015017 [arXiv:1512.04931] [INSPIRE].

    ADS  Google Scholar 

  46. R. Franceschini et al., What is the γγ resonance at 750 GeV?, arXiv:1512.04933 [INSPIRE].

  47. S. Di Chiara, L. Marzola and M. Raidal, First interpretation of the 750 GeV di-photon resonance at the LHC, arXiv:1512.04939 [INSPIRE].

  48. S.D. McDermott, P. Meade and H. Ramani, Singlet scalar resonances and the diphoton excess, Phys. Lett. B 755 (2016) 353 [arXiv:1512.05326] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  49. R.S. Gupta, S. Jäger, Y. Kats, G. Perez and E. Stamou, Interpreting a 750 GeV diphoton resonance, arXiv:1512.05332 [INSPIRE].

  50. A. Falkowski, O. Slone and T. Volansky, Phenomenology of a 750 GeV singlet, JHEP 02 (2016) 152 [arXiv:1512.05777] [INSPIRE].

    Article  ADS  Google Scholar 

  51. E. Molinaro, F. Sannino and N. Vignaroli, Minimal composite dynamics versus axion origin of the diphoton excess, arXiv:1512.05334 [INSPIRE].

  52. Y. Nakai, R. Sato and K. Tobioka, Footprints of new strong dynamics via anomaly, arXiv:1512.04924 [INSPIRE].

  53. B. Dutta, Y. Gao, T. Ghosh, I. Gogoladze and T. Li, Interpretation of the diphoton excess at CMS and ATLAS, arXiv:1512.05439 [INSPIRE].

  54. Q.-H. Cao, Y. Liu, K.-P. Xie, B. Yan and D.-M. Zhang, A boost test of anomalous diphoton resonance at the LHC, arXiv:1512.05542 [INSPIRE].

  55. P. Cox, A.D. Medina, T.S. Ray and A. Spray, Diphoton excess at 750 GeV from a radion in the bulk-Higgs scenario, arXiv:1512.05618 [INSPIRE].

  56. A. Ahmed, B.M. Dillon, B. Grzadkowski, J.F. Gunion and Y. Jiang, Higgs-radion interpretation of 750 GeV di-photon excess at the LHC, arXiv:1512.05771 [INSPIRE].

  57. S. Fichet, G. von Gersdorff and C. Royon, Scattering light by light at 750 GeV at the LHC, arXiv:1512.05751 [INSPIRE].

  58. R. Martinez, F. Ochoa and C.F. Sierra, Diphoton decay for a 750 GeV scalar boson in an U(1) model, arXiv:1512.05617 [INSPIRE].

  59. W. Chao, R. Huo and J.-H. Yu, The minimal scalar-stealth top interpretation of the diphoton excess, arXiv:1512.05738 [INSPIRE].

  60. R. Benbrik, C.-H. Chen and T. Nomura, Higgs singlet as a diphoton resonance in a vector-like quark model, arXiv:1512.06028 [INSPIRE].

  61. H. Han, S. Wang and S. Zheng, Scalar explanation of diphoton excess at LHC, arXiv:1512.06562 [INSPIRE].

  62. T.-F. Feng, X.-Q. Li, H.-B. Zhang and S.-M. Zhao, The LHC 750 GeV diphoton excess in supersymmetry with gauged baryon and lepton numbers, arXiv:1512.06696 [INSPIRE].

  63. I. Chakraborty and A. Kundu, Diphoton excess at 750 GeV: singlet scalars confront triviality, Phys. Rev. D 93 (2016) 055003 [arXiv:1512.06508] [INSPIRE].

    ADS  Google Scholar 

  64. S.M. Boucenna, S. Morisi and A. Vicente, The LHC diphoton resonance from gauge symmetry, arXiv:1512.06878 [INSPIRE].

  65. K. Das and S.K. Rai, The 750 GeV diphoton excess in a U(1) hidden symmetry model, arXiv:1512.07789 [INSPIRE].

  66. F. Goertz, J.F. Kamenik, A. Katz and M. Nardecchia, Indirect constraints on the scalar di-photon resonance at the LHC, arXiv:1512.08500 [INSPIRE].

  67. L. Bian, N. Chen, D. Liu and J. Shu, A hidden confining world on the 750 GeV diphoton excess, arXiv:1512.05759 [INSPIRE].

  68. W. Chao, Symmetries behind the 750 GeV diphoton excess, arXiv:1512.06297 [INSPIRE].

  69. H. Han, S. Wang and S. Zheng, Scalar explanation of diphoton excess at LHC, arXiv:1512.06562 [INSPIRE].

  70. M. Cvetič, J. Halverson and P. Langacker, String consistency, heavy exotics and the 750 GeV diphoton excess at the LHC, arXiv:1512.07622 [INSPIRE].

  71. A. Alves, A.G. Dias and K. Sinha, The 750 GeV S-cion: where else should we look for it?, arXiv:1512.06091 [INSPIRE].

  72. G. Li, Y.-N. Mao, Y.-L. Tang, C. Zhang, Y. Zhou and S.-H. Zhu, A loop-philic pseudoscalar, arXiv:1512.08255 [INSPIRE].

  73. M. Son and A. Urbano, A new scalar resonance at 750 GeV: towards a proof of concept in favor of strongly interacting theories, arXiv:1512.08307 [INSPIRE].

  74. F. Wang, W. Wang, L. Wu, J.M. Yang and M. Zhang, Interpreting 750 GeV diphoton resonance in the NMSSM with vector-like particles, arXiv:1512.08434 [INSPIRE].

  75. I. Low and J. Lykken, Implications of gauge invariance on a heavy diphoton resonance, arXiv:1512.09089 [INSPIRE].

  76. A.E.C. Hernández, The 750 GeV diphoton resonance can cause the SM fermion mass and mixing pattern, arXiv:1512.09092 [INSPIRE].

  77. A. Karozas, S.F. King, G.K. Leontaris and A.K. Meadowcroft, 750 GeV diphoton excess from E 6 in F-theory GUTs, arXiv:1601.00640 [INSPIRE].

  78. B. Dutta et al., Diphoton excess in consistent supersymmetric SU(5) models with vector-like particles, arXiv:1601.00866 [INSPIRE].

  79. S. Kanemura, N. Machida, S. Odori and T. Shindou, Diphoton excess at 750 GeV in an extended scalar sector, arXiv:1512.09053 [INSPIRE].

  80. K. Ghorbani and H. Ghorbani, The 750 GeV diphoton excess from a pseudoscalar in fermionic dark matter scenario, arXiv:1601.00602 [INSPIRE].

  81. H. Zhang, The 750 GeV diphoton excess: who introduces it?, arXiv:1601.01355 [INSPIRE].

  82. S. Fichet, G. von Gersdorff and C. Royon, Measuring the diphoton coupling of a 750 GeV resonance, arXiv:1601.01712 [INSPIRE].

  83. J. Cao, L. Shang, W. Su, Y. Zhang and J. Zhu, Interpreting the 750 GeV diphoton excess in the minimal dilaton model, arXiv:1601.02570 [INSPIRE].

  84. R. Ding, Z.-L. Han, Y. Liao and X.-D. Ma, Interpretation of 750 GeV diphoton excess at LHC in singlet extension of color-octet neutrino mass model, arXiv:1601.02714 [INSPIRE].

  85. A. Angelescu, A. Djouadi and G. Moreau, Scenarii for interpretations of the LHC diphoton excess: two Higgs doublets and vector-like quarks and leptons, Phys. Lett. B 756 (2016) 126 [arXiv:1512.04921] [INSPIRE].

    Article  Google Scholar 

  86. S. Di Chiara, L. Marzola and M. Raidal, First interpretation of the 750 GeV di-photon resonance at the LHC, arXiv:1512.04939 [INSPIRE].

  87. D. Becirevic, E. Bertuzzo, O. Sumensari and R.Z. Funchal, Can the new resonance at LHC be a CP-odd Higgs boson?, arXiv:1512.05623 [INSPIRE].

  88. A. Kobakhidze, F. Wang, L. Wu, J.M. Yang and M. Zhang, 750 GeV diphoton resonance explained as a heavy scalar in top/bottom seesaw model, arXiv:1512.05585 [INSPIRE].

  89. X.-F. Han and L. Wang, Implication of the 750 GeV diphoton resonance on two-Higgs-doublet model and its extensions with Higgs field, Phys. Rev. D 93 (2016) 055027 [arXiv:1512.06587] [INSPIRE].

    Google Scholar 

  90. W.-C. Huang, Y.-L.S. Tsai and T.-C. Yuan, Gauged two Higgs doublet model confronts the LHC 750 GeV di-photon anomaly, arXiv:1512.07268 [INSPIRE].

  91. S. Moretti and K. Yagyu, The 750 GeV diphoton excess and its explanation in 2-Higgs doublet models with a real inert scalar multiplet, arXiv:1512.07462 [INSPIRE].

  92. M. Badziak, Interpreting the 750 GeV diphoton excess in minimal extensions of two-Higgs-doublet models, arXiv:1512.07497 [INSPIRE].

  93. S. Chakraborty, A. Chakraborty and S. Raychaudhuri, Diphoton resonance at 750 GeV in the broken MRSSM, arXiv:1512.07527 [INSPIRE].

  94. W. Altmannshofer, J. Galloway, S. Gori, A.L. Kagan, A. Martin and J. Zupan, On the 750 GeV di-photon excess, arXiv:1512.07616 [INSPIRE].

  95. K. Cheung, P. Ko, J.S. Lee, J. Park and P.-Y. Tseng, A Higgcision study on the 750 GeV di-photon resonance and 125 GeV SM Higgs boson with the Higgs-singlet mixing, arXiv:1512.07853 [INSPIRE].

  96. N. Bizot, S. Davidson, M. Frigerio and J.-L. Kneur, Two Higgs doublets to explain the excesses ppγγ (750 GeV) and hτ ± μ , JHEP 03 (2016) 073 [arXiv:1512.08508] [INSPIRE].

    Article  Google Scholar 

  97. Y.-L. Tang and S.-H. Zhu, NMSSM extended with vector-like particles and the diphoton excess on the LHC, arXiv:1512.08323 [INSPIRE].

  98. A.E.C. Hernández, I.d.M. Varzielas and E. Schumacher, The 750 GeV diphoton resonance in the light of a 2HDM with S 3 flavour symmetry, arXiv:1601.00661 [INSPIRE].

  99. W. Chao, The diphoton excess from an exceptional supersymmetric standard model, arXiv:1601.00633 [INSPIRE].

  100. X.-F. Han, L. Wang, L. Wu, J.M. Yang and M. Zhang, Explaining 750 GeV diphoton excess from top/bottom partner cascade decay in two-Higgs-doublet model extension, arXiv:1601.00534 [INSPIRE].

  101. N. Sonmez, Charged Higgs pair production in THDM through photon-photon collisions at the ILC, arXiv:1601.01837 [INSPIRE].

  102. Particle Data Group collaboration, K.A. Olive et al., Review of particle physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].

  103. M. Chala, M. Duerr, F. Kahlhoefer and K. Schmidt-Hoberg, Tricking Landau-Yang: how to obtain the diphoton excess from a vector resonance, Phys. Lett. B 755 (2016) 145 [arXiv:1512.06833] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  104. S. Moretti, Variations on a Higgs theme, Phys. Rev. D 91 (2015) 014012 [arXiv:1407.3511] [INSPIRE].

    ADS  Google Scholar 

  105. N. Toro and I. Yavin, Multiphotons and photon jets from new heavy vector bosons, Phys. Rev. D 86 (2012) 055005 [arXiv:1202.6377] [INSPIRE].

    ADS  Google Scholar 

  106. A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].

    Article  ADS  Google Scholar 

  107. Parton Distribution Functions webpage, https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWGPDF.

  108. A. Djouadi, The anatomy of electro-weak symmetry breaking. I: the Higgs boson in the standard model, Phys. Rept. 457 (2008) 1 [hep-ph/0503172] [INSPIRE].

  109. H. Ito, T. Moroi and Y. Takaesu, Studying 750 GeV di-photon resonance at photon-photon collider, Phys. Lett. B 756 (2016) 147 [arXiv:1601.01144] [INSPIRE].

    Article  Google Scholar 

  110. R.M. Godbole, S.D. Rindani and R.K. Singh, Study of CP property of the Higgs at a photon collider using \( \gamma \gamma \to t\overline{t}\to lX \), Phys. Rev. D 67 (2003) 095009 [Erratum ibid. D 71 (2005) 039902] [hep-ph/0211136] [INSPIRE].

  111. G.P. Lepage and S.J. Brodsky, Exclusive processes in perturbative quantum chromodynamics, Phys. Rev. D 22 (1980) 2157 [INSPIRE].

    ADS  Google Scholar 

  112. P. Maris and P.C. Tandy, The quark photon vertex and the pion charge radius, Phys. Rev. C 61 (2000) 045202 [nucl-th/9910033] [INSPIRE].

  113. J.A. Oller, L. Roca and C. Schat, Improved dispersion relations for γγπ 0 π 0, Phys. Lett. B 659 (2008) 201 [arXiv:0708.1659] [INSPIRE].

    Article  ADS  Google Scholar 

  114. G.J. Gounaris, F.M. Renard and N.D. Vlachos, Tests of anomalous Higgs boson couplings through e e +HZ and Hγ, Nucl. Phys. B 459 (1996) 51 [hep-ph/9509316] [INSPIRE].

  115. A. Barroso, J. Pulido and J.C. Romao, Higgs production at e + e colliders, Nucl. Phys. B 267 (1986) 509 [INSPIRE].

    Article  ADS  Google Scholar 

  116. A. Abbasabadi, D. Bowser-Chao, D.A. Dicus and W.W. Repko, Higgs photon associated production at eē colliders, Phys. Rev. D 52 (1995) 3919 [hep-ph/9507463] [INSPIRE].

  117. A. Djouadi, V. Driesen, W. Hollik and J. Rosiek, Associated production of Higgs bosons and a photon in high-energy e + e collisions, Nucl. Phys. B 491 (1997) 68 [hep-ph/9609420] [INSPIRE].

  118. A. Djouadi, V. Driesen, W. Hollik and A. Kraft, The Higgs photon-Z boson coupling revisited, Eur. Phys. J. C 1 (1998) 163 [hep-ph/9701342] [INSPIRE].

  119. V.D. Barger, K.-M. Cheung, A. Djouadi, B.A. Kniehl and P.M. Zerwas, Higgs bosons: intermediate mass range at e + e colliders, Phys. Rev. D 49 (1994) 79 [hep-ph/9306270] [INSPIRE].

  120. S.S. Biswal, R.M. Godbole, B. Mellado and S. Raychaudhuri, Azimuthal angle probe of anomalous HW W couplings at a high energy ep collider, Phys. Rev. Lett. 109 (2012) 261801 [arXiv:1203.6285] [INSPIRE].

    Article  ADS  Google Scholar 

  121. S.S. Biswal, R.M. Godbole, R.K. Singh and D. Choudhury, Signatures of anomalous VVH interactions at a linear collider, Phys. Rev. D 73 (2006) 035001 [Erratum ibid. D 74 (2006) 039904] [hep-ph/0509070] [INSPIRE].

  122. S.S. Biswal, D. Choudhury, R.M. Godbole and Mamta, Role of polarization in probing anomalous gauge interactions of the Higgs boson, Phys. Rev. D 79 (2009) 035012 [arXiv:0809.0202] [INSPIRE].

  123. A. Djouadi, R.M. Godbole, B. Mellado and K. Mohan, Probing the spin-parity of the Higgs boson via jet kinematics in vector boson fusion, Phys. Lett. B 723 (2013) 307 [arXiv:1301.4965] [INSPIRE].

    Article  ADS  Google Scholar 

  124. R.M. Godbole, D.J. Miller, K.A. Mohan and C.D. White, Jet substructure and probes of CP-violation in V h production, JHEP 04 (2015) 103 [arXiv:1409.5449] [INSPIRE].

    Article  ADS  Google Scholar 

  125. G.C. Branco, P.M. Ferreira, L. Lavoura, M.N. Rebelo, M. Sher and J.P. Silva, Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE].

    Article  ADS  Google Scholar 

  126. J. Gunion, H. Haber, G. Kane and S. Dawson, The Higgs hunter’s guide, Addison Wesley, Reading U.S.A. (1990) [Front. Phys. 80 (2000) 1] [INSPIRE].

  127. A. Djouadi, The anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [INSPIRE].

  128. A. Djouadi, L. Maiani, G. Moreau, A. Polosa, J. Quevillon and V. Riquer, The post-Higgs MSSM scenario: habemus MSSM?, Eur. Phys. J. C 73 (2013) 2650 [arXiv:1307.5205] [INSPIRE].

    Article  ADS  Google Scholar 

  129. L. Maiani, A.D. Polosa and V. Riquer, Probing minimal supersymmetry at the LHC with the Higgs boson masses, New J. Phys. 14 (2012) 073029 [arXiv:1202.5998] [INSPIRE].

    Article  ADS  Google Scholar 

  130. A. Djouadi and J. Quevillon, The MSSM Higgs sector at a high M SUSY : reopening the low tan β regime and heavy Higgs searches, JHEP 10 (2013) 028 [arXiv:1304.1787] [INSPIRE].

    Article  ADS  Google Scholar 

  131. A. Djouadi, L. Maiani, A. Polosa, J. Quevillon and V. Riquer, Fully covering the MSSM Higgs sector at the LHC, JHEP 06 (2015) 168 [arXiv:1502.05653] [INSPIRE].

    Article  ADS  Google Scholar 

  132. ATLAS and CMS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s}=7 \) and 8 TeV, ATLAS-CONF-2015-044, CERN, Geneva Switzerland (2015).

  133. M. Carena, I. Low, N.R. Shah and C.E.M. Wagner, Impersonating the standard model Higgs boson: alignment without decoupling, JHEP 04 (2014) 015 [arXiv:1310.2248] [INSPIRE].

    Article  ADS  Google Scholar 

  134. H.E. Haber, Challenges for nonminimal Higgs searches at future colliders, hep-ph/9505240 [INSPIRE].

  135. Y. Okada, M. Yamaguchi and T. Yanagida, Upper bound of the lightest Higgs boson mass in the minimal supersymmetric standard model, Prog. Theor. Phys. 85 (1991) 1 [INSPIRE].

    Article  ADS  Google Scholar 

  136. J.R. Ellis, G. Ridolfi and F. Zwirner, Radiative corrections to the masses of supersymmetric Higgs bosons, Phys. Lett. B 257 (1991) 83 [INSPIRE].

    Article  ADS  Google Scholar 

  137. H.E. Haber and R. Hempfling, Can the mass of the lightest Higgs boson of the minimal supersymmetric model be larger than m Z ?, Phys. Rev. Lett. 66 (1991) 1815 [INSPIRE].

    Article  ADS  Google Scholar 

  138. E. Bagnaschi et al., Benchmark scenarios for low tan β in the MSSM, LHCHXSWG-2015-002, CERN, Geneva Switzerland (2015).

  139. A. Djouadi and A. Lenz, Sealing the fate of a fourth generation of fermions, Phys. Lett. B 715 (2012) 310 [arXiv:1204.1252] [INSPIRE].

    Article  ADS  Google Scholar 

  140. A. Denner et al., Higgs production and decay with a fourth standard-model-like fermion generation, Eur. Phys. J. C 72 (2012) 1992 [arXiv:1111.6395] [INSPIRE].

    Article  ADS  Google Scholar 

  141. E. Kuflik, Y. Nir and T. Volansky, Implications of Higgs searches on the four generation standard model, Phys. Rev. Lett. 110 (2013) 091801 [arXiv:1204.1975] [INSPIRE].

    Article  ADS  Google Scholar 

  142. A. Djouadi, P. Gambino and B.A. Kniehl, Two loop electroweak heavy fermion corrections to Higgs boson production and decay, Nucl. Phys. B 523 (1998) 17 [hep-ph/9712330] [INSPIRE].

  143. A. Djouadi, J. Kalinowski and M. Spira, HDECAY: a program for Higgs boson decays in the standard model and its supersymmetric extension, Comput. Phys. Commun. 108 (1998) 56 [hep-ph/9704448] [INSPIRE].

  144. A. Djouadi, M.M. Muhlleitner and M. Spira, Decays of supersymmetric particles: the program SUSY-HIT (SUspect-SdecaY-HDECAY-InTerface), Acta Phys. Polon. B 38 (2007) 635 [hep-ph/0609292] [INSPIRE].

  145. Y. Mambrini, G. Arcadi and A. Djouadi, The LHC diphoton resonance and dark matter, Phys. Lett. B 755 (2016) 426 [arXiv:1512.04913] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  146. M. Backovic, A. Mariotti and D. Redigolo, Di-photon excess illuminates dark matter, arXiv:1512.04917 [INSPIRE].

  147. D. Barducci, A. Goudelis, S. Kulkarni and D. Sengupta, One jet to rule them all: monojet constraints and invisible decays of a 750 GeV diphoton resonance, arXiv:1512.06842 [INSPIRE].

  148. P.S.B. Dev and D. Teresi, Asymmetric dark matter in the sun and the diphoton excess at the LHC, arXiv:1512.07243 [INSPIRE].

  149. P. Ko and T. Nomura, Dark sector shining through 750 GeV dark Higgs boson at the LHC, arXiv:1601.02490 [INSPIRE].

  150. ATLAS collaboration, A search for tt resonances using lepton-plus-jets events in proton-proton collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 08 (2015) 148 [arXiv:1505.07018] [INSPIRE].

  151. CMS collaboration, Search for resonant \( t\overline{t} \) production in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. D 93(2016) 012001 [arXiv:1506.03062] [INSPIRE].

  152. ATLAS collaboration, Search for neutral Higgs bosons of the minimal supersymmetric standard model in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 11 (2014) 056 [arXiv:1409.6064] [INSPIRE].

  153. CMS collaboration, Search for neutral MSSM Higgs bosons decaying to a pair of τ leptons in pp collisions, JHEP 10 (2014) 160 [arXiv:1408.3316] [INSPIRE].

  154. A. Angelescu, A. Djouadi and G. Moreau, Vector-like top/bottom quark partners and Higgs physics at the LHC, Eur. Phys. J. C 76 (2016) 99 [arXiv:1510.07527] [INSPIRE].

    Article  ADS  Google Scholar 

  155. ATLAS collaboration, Search for vector-like B quarks in events with one isolated lepton, missing transverse momentum and jets at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 91 (2015) 112011 [arXiv:1503.05425] [INSPIRE].

  156. ATLAS collaboration, Search for production of vector-like quark pairs and of four top quarks in the lepton-plus-jets final state in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 08 (2015) 105 [arXiv:1505.04306] [INSPIRE].

  157. ATLAS collaboration, Search for pair production of a new heavy quark that decays into a W boson and a light quark in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 92 (2015) 112007 [arXiv:1509.04261] [INSPIRE].

  158. CMS collaboration, Inclusive search for a vector-like T quark with charge 2/3 in pp collisions at \( \sqrt{s}=8 \) TeV, Phys. Lett. B 729 (2014) 149 [arXiv:1311.7667] [INSPIRE].

  159. CMS collaboration, Search for a charged Higgs boson in pp collisions at \( \sqrt{s}=8 \) TeV, JHEP 11 (2015) 018 [arXiv:1508.07774] [INSPIRE].

  160. ATLAS collaboration, Search for charged Higgs bosons decaying via H ±τ ± ν in fully hadronic final states using pp collision data at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 03 (2015) 088 [arXiv:1412.6663] [INSPIRE].

  161. ATLAS collaboration, Search for charged Higgs bosons in the H ±tb decay channel in pp collisions at \( \sqrt{s}=8 \) TeV using the ATLAS detector, arXiv:1512.03704 [INSPIRE].

  162. R.V. Harlander, S. Liebler and H. Mantler, SusHi: a program for the calculation of Higgs production in gluon fusion and bottom-quark annihilation in the standard model and the MSSM, Comput. Phys. Commun. 184 (2013) 1605 [arXiv:1212.3249] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  163. M. Spira, A. Djouadi, D. Graudenz and P.M. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [INSPIRE].

  164. A. Djouadi, M. Spira and P.M. Zerwas, Production of Higgs bosons in proton colliders: QCD corrections, Phys. Lett. B 264 (1991) 440 [INSPIRE].

    Article  ADS  Google Scholar 

  165. A. Djouadi, M. Spira and P.M. Zerwas, Two photon decay widths of Higgs particles, Phys. Lett. B 311 (1993) 255 [hep-ph/9305335] [INSPIRE].

  166. S. Dawson, Radiative corrections to Higgs boson production, Nucl. Phys. B 359 (1991) 283 [INSPIRE].

    Article  ADS  Google Scholar 

  167. R.V. Harlander and W.B. Kilgore, Next-to-next-to-leading order Higgs production at hadron colliders, Phys. Rev. Lett. 88 (2002) 201801 [hep-ph/0201206] [INSPIRE].

  168. C. Anastasiou and K. Melnikov, Higgs boson production at hadron colliders in NNLO QCD, Nucl. Phys. B 646 (2002) 220 [hep-ph/0207004] [INSPIRE].

  169. V. Ravindran, J. Smith and W.L. van Neerven, NNLO corrections to the total cross-section for Higgs boson production in hadron hadron collisions, Nucl. Phys. B 665 (2003) 325 [hep-ph/0302135] [INSPIRE].

  170. R.V. Harlander and W.B. Kilgore, Production of a pseudoscalar Higgs boson at hadron colliders at next-to-next-to leading order, JHEP 10 (2002) 017 [hep-ph/0208096] [INSPIRE].

  171. S. Catani, D. de Florian, M. Grazzini and P. Nason, Soft gluon resummation for Higgs boson production at hadron colliders, JHEP 07 (2003) 028 [hep-ph/0306211] [INSPIRE].

  172. C. Anastasiou, C. Duhr, F. Dulat, F. Herzog and B. Mistlberger, Higgs boson gluon-fusion production in QCD at three loops, Phys. Rev. Lett. 114 (2015) 212001 [arXiv:1503.06056] [INSPIRE].

    Article  ADS  Google Scholar 

  173. LHC Higgs Cross section Working Group collaboration, S. Dittmaier et al., Handbook of LHC Higgs cross sections: 1. Inclusive observables, arXiv:1101.0593 [INSPIRE].

  174. J. Ellis, D.S. Hwang, K. Sakurai and M. Takeuchi, Disentangling Higgs-top couplings in associated production, JHEP 04 (2014) 004 [arXiv:1312.5736] [INSPIRE].

    Article  ADS  Google Scholar 

  175. F. Boudjema, R.M. Godbole, D. Guadagnoli and K.A. Mohan, Lab-frame observables for probing the top-Higgs interaction, Phys. Rev. D 92 (2015) 015019 [arXiv:1501.03157] [INSPIRE].

    ADS  Google Scholar 

  176. M.R. Buckley and D. Goncalves, Boosting the direct CP measurement of the Higgs-top coupling, Phys. Rev. Lett. 116 (2016) 091801 [arXiv:1507.07926] [INSPIRE].

    Article  ADS  Google Scholar 

  177. N. Craig, F. D’Eramo, P. Draper, S. Thomas and H. Zhang, The hunt for the rest of the Higgs bosons, JHEP 06 (2015) 137 [arXiv:1504.04630] [INSPIRE].

    Article  ADS  Google Scholar 

  178. A. Djouadi, A. Falkowski, Y. Mambrini and J. Quevillon, Direct detection of Higgs-portal dark matter at the LHC, Eur. Phys. J. C 73 (2013) 2455 [arXiv:1205.3169] [INSPIRE].

    Article  ADS  Google Scholar 

  179. D. Choudhury and D.P. Roy, Signatures of an invisibly decaying Higgs particle at LHC, Phys. Lett. B 322 (1994) 368 [hep-ph/9312347] [INSPIRE].

  180. O.J.P. Eboli and D. Zeppenfeld, Observing an invisible Higgs boson, Phys. Lett. B 495 (2000) 147 [hep-ph/0009158] [INSPIRE].

  181. R.M. Godbole, M. Guchait, K. Mazumdar, S. Moretti and D.P. Roy, Search for ‘invisible’ Higgs signals at LHC via associated production with gauge bosons, Phys. Lett. B 571 (2003) 184 [hep-ph/0304137] [INSPIRE].

  182. D. Ghosh, R. Godbole, M. Guchait, K. Mohan and D. Sengupta, Looking for an invisible Higgs signal at the LHC, Phys. Lett. B 725 (2013) 344 [arXiv:1211.7015] [INSPIRE].

    Article  ADS  Google Scholar 

  183. Michael Spira’s website, http://tiger.web.psi.ch/proglist.html.

  184. M. Spira, QCD effects in Higgs physics, Fortsch. Phys. 46 (1998) 203 [hep-ph/9705337] [INSPIRE].

  185. W. Beenakker, S. Dittmaier, M. Krämer, B. Plumper, M. Spira and P.M. Zerwas, Higgs radiation off top quarks at the Tevatron and the LHC, Phys. Rev. Lett. 87 (2001) 201805 [hep-ph/0107081] [INSPIRE].

  186. W. Beenakker, S. Dittmaier, M. Krämer, B. Plumper, M. Spira and P.M. Zerwas, NLO QCD corrections to ttH production in hadron collisions, Nucl. Phys. B 653 (2003) 151 [hep-ph/0211352] [INSPIRE].

  187. L. Reina and S. Dawson, Next-to-leading order results for \( t\overline{t}h \) production at the Tevatron, Phys. Rev. Lett. 87 (2001) 201804 [hep-ph/0107101] [INSPIRE].

  188. S. Dawson, L.H. Orr, L. Reina and D. Wackeroth, Associated top quark Higgs boson production at the LHC, Phys. Rev. D 67 (2003) 071503 [hep-ph/0211438] [INSPIRE].

  189. R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, R. Pittau and P. Torrielli, Scalar and pseudoscalar Higgs production in association with a top-antitop pair, Phys. Lett. B 701 (2011) 427 [arXiv:1104.5613] [INSPIRE].

    Article  ADS  Google Scholar 

  190. T. Plehn, M. Spira and P.M. Zerwas, Pair production of neutral Higgs particles in gluon-gluon collisions, Nucl. Phys. B 479 (1996) 46 [Erratum ibid. B 531 (1998) 655] [hep-ph/9603205] [INSPIRE].

  191. S. Dawson, S. Dittmaier and M. Spira, Neutral Higgs boson pair production at hadron colliders: QCD corrections, Phys. Rev. D 58 (1998) 115012 [hep-ph/9805244] [INSPIRE].

  192. A. Djouadi, W. Kilian, M. Muhlleitner and P.M. Zerwas, Production of neutral Higgs boson pairs at LHC, Eur. Phys. J. C 10 (1999) 45 [hep-ph/9904287] [INSPIRE].

  193. J. Baglio, A. Djouadi, R. Gröber, M.M. Mühlleitner, J. Quevillon and M. Spira, The measurement of the Higgs self-coupling at the LHC: theoretical status, JHEP 04 (2013) 151 [arXiv:1212.5581] [INSPIRE].

    Article  ADS  Google Scholar 

  194. T. Han and S. Willenbrock, QCD correction to the ppW H and ZH total cross-sections, Phys. Lett. B 273 (1991) 167 [INSPIRE].

    Article  ADS  Google Scholar 

  195. T. Han, G. Valencia and S. Willenbrock, Structure function approach to vector boson scattering in pp collisions, Phys. Rev. Lett. 69 (1992) 3274 [hep-ph/9206246] [INSPIRE].

  196. A. Djouadi and M. Spira, SUSY-QCD corrections to Higgs boson production at hadron colliders, Phys. Rev. D 62 (2000) 014004 [hep-ph/9912476] [INSPIRE].

  197. O. Brein, A. Djouadi and R. Harlander, NNLO QCD corrections to the Higgs-strahlung processes at hadron colliders, Phys. Lett. B 579 (2004) 149 [hep-ph/0307206] [INSPIRE].

  198. P. Bolzoni, F. Maltoni, S.-O. Moch and M. Zaro, Higgs production via vector-boson fusion at NNLO in QCD, Phys. Rev. Lett. 105 (2010) 011801 [arXiv:1003.4451] [INSPIRE].

    Article  ADS  Google Scholar 

  199. A. Djouadi, Precision Higgs coupling measurements at the LHC through ratios of production cross sections, Eur. Phys. J. C 73 (2013) 2498 [arXiv:1208.3436] [INSPIRE].

    Article  ADS  Google Scholar 

  200. A. Djouadi, J. Quevillon and R. Vega-Morales, Into the multi-TeV scale with a Higgs golden ratio, arXiv:1509.03913 [INSPIRE].

  201. A. Djouadi, J. Kalinowski and P.M. Zerwas, Exploring the SUSY Higgs sector at e + e linear colliders: a synopsis, Z. Phys. C 57 (1993) 569 [INSPIRE].

    ADS  Google Scholar 

  202. A. Djouadi, J. Kalinowski, P. Ohmann and P.M. Zerwas, Heavy SUSY Higgs bosons at e+elinear colliders, Z. Phys. C 74 (1997) 93 [hep-ph/9605339] [INSPIRE].

  203. A. Djouadi, Higgs particles at future hadron and electron-positron colliders, Int. J. Mod. Phys. A 10 (1995) 1 [hep-ph/9406430] [INSPIRE].

  204. A. Djouadi, J. Kalinowski and P.M. Zerwas, Higgs radiation off top quarks in high-energy e+ecolliders, Z. Phys. C 54 (1992) 255 [INSPIRE].

    ADS  Google Scholar 

  205. A. Djouadi, J. Kalinowski and P.M. Zerwas, Measuring the Htt coupling in e + e collisions, Mod. Phys. Lett. A 7 (1992) 1765 [INSPIRE].

    Article  ADS  Google Scholar 

  206. P.S. Bhupal Dev, A. Djouadi, R.M. Godbole, M.M. Muhlleitner and S.D. Rindani, Determining the CP properties of the Higgs boson, Phys. Rev. Lett. 100 (2008) 051801 [arXiv:0707.2878] [INSPIRE].

    Article  ADS  Google Scholar 

  207. R.M. Godbole, C. Hangst, M. Muhlleitner, S.D. Rindani and P. Sharma, Model-independent analysis of Higgs spin and CP properties in the process \( {e}^{+}{e}^{-}\to t\overline{t}\varPhi \), Eur. Phys. J. C 71 (2011) 1681 [arXiv:1103.5404] [INSPIRE].

    Article  ADS  Google Scholar 

  208. V.D. Barger, M.S. Berger, J.F. Gunion and T. Han, Higgs boson physics in the s channel at μ + μ colliders, Phys. Rept. 286 (1997) 1 [hep-ph/9602415] [INSPIRE].

  209. J. Baglio, A. Djouadi and J. Quevillon, Prospects for Higgs physics at energies up to 100 TeV, arXiv:1511.07853 [INSPIRE].

  210. A. Djouadi, J. Kalinowski and P.M. Zerwas, Two and three-body decay modes of SUSY Higgs particles, Z. Phys. C 70 (1996) 435 [hep-ph/9511342] [INSPIRE].

  211. S.A.R. Ellis, R.M. Godbole, S. Gopalakrishna and J.D. Wells, Survey of vector-like fermion extensions of the standard model and their phenomenological implications, JHEP 09 (2014) 130 [arXiv:1404.4398] [INSPIRE].

    Article  ADS  Google Scholar 

  212. J.A. Aguilar-Saavedra, R. Benbrik, S. Heinemeyer and M. Pérez-Victoria, Handbook of vectorlike quarks: mixing and single production, Phys. Rev. D 88 (2013) 094010 [arXiv:1306.0572] [INSPIRE].

    ADS  Google Scholar 

  213. A. Azatov et al., Higgs boson production via vector-like top-partner decays: diphoton or multilepton plus multijets channels at the LHC, Phys. Rev. D 85 (2012) 115022 [arXiv:1204.0455] [INSPIRE].

    ADS  Google Scholar 

  214. S. Gopalakrishna, T. Mandal, S. Mitra and G. Moreau, LHC signatures of warped-space vectorlike quarks, JHEP 08 (2014) 079 [arXiv:1306.2656] [INSPIRE].

    Article  ADS  Google Scholar 

  215. S. Gopalakrishna, T.S. Mukherjee and S. Sadhukhan, Extra neutral scalars with vectorlike fermions at the LHC, Phys. Rev. D 93 (2016) 055004 [arXiv:1504.01074] [INSPIRE].

    ADS  Google Scholar 

  216. A. Falkowski, D.M. Straub and A. Vicente, Vector-like leptons: Higgs decays and collider phenomenology, JHEP 05 (2014) 092 [arXiv:1312.5329] [INSPIRE].

    Article  ADS  Google Scholar 

  217. M. Redi, Leptons in composite MFV, JHEP 09 (2013) 060 [arXiv:1306.1525] [INSPIRE].

    Article  ADS  Google Scholar 

  218. K. Kumericki, I. Picek and B. Radovcic, TeV-scale seesaw with quintuplet fermions, Phys. Rev. D 86 (2012) 013006 [arXiv:1204.6599] [INSPIRE].

    ADS  Google Scholar 

  219. S.P. Martin, Extra vector-like matter and the lightest Higgs scalar boson mass in low-energy supersymmetry, Phys. Rev. D 81 (2010) 035004 [arXiv:0910.2732] [INSPIRE].

    ADS  Google Scholar 

  220. J.A. Aguilar-Saavedra, Heavy lepton pair production at LHC: model discrimination with multi-lepton signals, Nucl. Phys. B 828 (2010) 289 [arXiv:0905.2221] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  221. F. del Aguila and J.A. Aguilar-Saavedra, Electroweak scale seesaw and heavy Dirac neutrino signals at LHC, Phys. Lett. B 672 (2009) 158 [arXiv:0809.2096] [INSPIRE].

    Article  ADS  Google Scholar 

  222. F. del Aguila and J.A. Aguilar-Saavedra, Distinguishing seesaw models at LHC with multi-lepton signals, Nucl. Phys. B 813 (2009) 22 [arXiv:0808.2468] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  223. R. Franceschini, T. Hambye and A. Strumia, Type-III see-saw at LHC, Phys. Rev. D 78 (2008) 033002 [arXiv:0805.1613] [INSPIRE].

    ADS  Google Scholar 

  224. A. Abada, C. Biggio, F. Bonnet, M.B. Gavela and T. Hambye, μeγ and τℓγ decays in the fermion triplet seesaw model, Phys. Rev. D 78 (2008) 033007 [arXiv:0803.0481] [INSPIRE].

  225. A. Abada, C. Biggio, F. Bonnet, M.B. Gavela and T. Hambye, Low energy effects of neutrino masses, JHEP 12 (2007) 061 [arXiv:0707.4058] [INSPIRE].

    Article  ADS  Google Scholar 

  226. B. Bajc and G. Senjanović, Seesaw at LHC, JHEP 08 (2007) 014 [hep-ph/0612029] [INSPIRE].

  227. K. Fujikawa, A vector-like extension of the standard model, Prog. Theor. Phys. 92 (1994) 1149 [hep-ph/9411258] [INSPIRE].

  228. A. Djouadi, New fermions at e + e colliders. 1. Production and decay, Z. Phys. C 63 (1994) 317 [hep-ph/9308339] [INSPIRE].

  229. G. Azuelos and A. Djouadi, New fermions at e + e colliders. 2. Signals and backgrounds, Z. Phys. C 63 (1994) 327 [hep-ph/9308340] [INSPIRE].

  230. F. del Aguila, J. de Blas and M. Pérez-Victoria, Effects of new leptons in electroweak precision data, Phys. Rev. D 78 (2008) 013010 [arXiv:0803.4008] [INSPIRE].

    ADS  Google Scholar 

  231. N. Bizot, S. Davidson, M. Frigerio and J.-L. Kneur, Two Higgs doublets to explain the excesses ppγγ (750 GeV) and hτ ± μ , JHEP 03 (2016) 073 [arXiv:1512.08508] [INSPIRE].

    Article  Google Scholar 

  232. T.G. Rizzo, The exotic fermions in E 6 and the anomalous magnetic moments of leptons, Phys. Rev. D 33 (1986) 3329 [INSPIRE].

    ADS  Google Scholar 

  233. P. Mery, S.E. Moubarik, M. Perrottet and F.M. Renard, Constraints on nonstandard effects from present and future muon g − 2 measurements, Z. Phys. C 46 (1990) 229 [INSPIRE].

    Google Scholar 

  234. F. Csikor and Z. Fodor, Constraints on mirror fermion mixing angles from anomalous magnetic moment data, Phys. Lett. B 287 (1992) 358 [hep-ph/9205222] [INSPIRE].

  235. L3 collaboration, P. Achard et al., Search for heavy neutral and charged leptons in e + e annihilation at LEP, Phys. Lett. B 517 (2001) 75 [hep-ex/0107015] [INSPIRE].

  236. L3 collaboration, O. Adriani et al., Search for isosinglet neutral heavy leptons in Z 0 decays, Phys. Lett. B 295 (1992) 371 [INSPIRE].

  237. DELPHI collaboration, P. Abreu et al., Search for neutral heavy leptons produced in Z decays, Z. Phys. C 74 (1997) 57 [Erratum ibid. C 75 (1997) 580] [INSPIRE].

  238. D.A. Dicus, D.D. Karatas and P. Roy, Lepton nonconservation at supercollider energies, Phys. Rev. D 44 (1991) 2033 [INSPIRE].

    ADS  Google Scholar 

  239. A. Datta, M. Guchait and A. Pilaftsis, Probing lepton number violation via Majorana neutrinos at hadron supercolliders, Phys. Rev. D 50 (1994) 3195 [hep-ph/9311257] [INSPIRE].

  240. F.M.L. Almeida, Jr., Y.D.A. Coutinho, J.A. Martins Simoes and M.A.B. do Vale, On a signature for heavy Majorana neutrinos in hadronic collisions, Phys. Rev. D 62 (2000) 075004 [hep-ph/0002024] [INSPIRE].

  241. O. Panella, M. Cannoni, C. Carimalo and Y.N. Srivastava, Signals of heavy Majorana neutrinos at hadron colliders, Phys. Rev. D 65 (2002) 035005 [hep-ph/0107308] [INSPIRE].

  242. T. Han and B. Zhang, Signatures for Majorana neutrinos at hadron colliders, Phys. Rev. Lett. 97 (2006) 171804 [hep-ph/0604064] [INSPIRE].

  243. F. del Aguila, J.A. Aguilar-Saavedra and R. Pittau, Heavy neutrino signals at Large Hadron Colliders, JHEP 10 (2007) 047 [hep-ph/0703261] [INSPIRE].

  244. F.F. Deppisch, P.S. Bhupal Dev and A. Pilaftsis, Neutrinos and collider physics, New J. Phys. 17 (2015) 075019 [arXiv:1502.06541] [INSPIRE].

    Article  ADS  Google Scholar 

  245. A. Das and N. Okada, Improved bounds on the heavy neutrino productions at the LHC, Phys. Rev. D 93 (2016) 033003 [arXiv:1510.04790] [INSPIRE].

    ADS  Google Scholar 

  246. CMS collaboration, Search for heavy Majorana neutrinos in μ ± μ ±+ jets events in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Phys. Lett. B 748 (2015) 144 [arXiv:1501.05566] [INSPIRE].

  247. ATLAS collaboration, Search for type-III seesaw heavy leptons in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector,Phys. Rev. D 92(2015) 032001 [arXiv:1506.01839] [INSPIRE].

  248. ATLAS collaboration, Search for heavy lepton resonances decaying to a Z boson and a lepton in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 09 (2015) 108 [arXiv:1506.01291] [INSPIRE].

  249. CMS collaboration, Search for heavy lepton partners of neutrinos in proton-proton collisions in the context of the type-III seesaw mechanism, Phys. Lett. B 718 (2012) 348 [arXiv:1210.1797] [INSPIRE].

  250. R. Foot, H. Lew, X.G. He and G.C. Joshi, Seesaw neutrino masses induced by a triplet of leptons, Z. Phys. C 44 (1989) 441 [INSPIRE].

    Google Scholar 

  251. E. Ma, Pathways to naturally small neutrino masses, Phys. Rev. Lett. 81 (1998) 1171 [hep-ph/9805219] [INSPIRE].

  252. B. Bajc, M. Nemevšek and G. Senjanović, Probing seesaw at LHC, Phys. Rev. D 76 (2007) 055011 [hep-ph/0703080] [INSPIRE].

  253. C. Biggio and F. Bonnet, Implementation of the type III seesaw model in FeynRules/MadGraph and prospects for discovery with early LHC data, Eur. Phys. J. C 72 (2012) 1899 [arXiv:1107.3463] [INSPIRE].

    Article  ADS  Google Scholar 

  254. L.M. Jones and H.W. Wyld, On hadronic charm production by gluon fusion, Phys. Rev. D 17 (1978) 1782 [INSPIRE].

    ADS  Google Scholar 

  255. J. Babcock, D.W. Sivers and S. Wolfram, QCD estimates for heavy particle production, Phys. Rev. D 18 (1978) 162 [INSPIRE].

    ADS  Google Scholar 

  256. H.M. Georgi, S.L. Glashow, M.E. Machacek and D.V. Nanopoulos, Charmed particles from two-gluon annihilation in proton proton collisions, Annals Phys. 114 (1978) 273 [INSPIRE].

    Article  ADS  Google Scholar 

  257. M. Gluck, J.F. Owens and E. Reya, Gluon contribution to hadronic J/ψ production, Phys. Rev. D 17 (1978) 2324 [INSPIRE].

    ADS  Google Scholar 

  258. B.L. Combridge, Associated production of heavy flavor states in pp and \( \overline{p}p \) interactions: some QCD estimates, Nucl. Phys. B 151 (1979) 429 [INSPIRE].

    Article  ADS  Google Scholar 

  259. M. Cacciari, S. Frixione, M.L. Mangano, P. Nason and G. Ridolfi, Updated predictions for the total production cross sections of top and of heavier quark pairs at the Tevatron and at the LHC, JHEP 09 (2008) 127 [arXiv:0804.2800] [INSPIRE].

    Article  ADS  Google Scholar 

  260. S.D. Drell and T.-M. Yan, Massive lepton pair production in hadron-hadron collisions at high-energies, Phys. Rev. Lett. 25 (1970) 316 [Erratum ibid. 25 (1970) 902] [INSPIRE].

  261. G. Altarelli, R.K. Ellis and G. Martinelli, Large perturbative corrections to the Drell-Yan process in QCD, Nucl. Phys. B 157 (1979) 461 [INSPIRE].

    Article  ADS  Google Scholar 

  262. J. Kubar-André and F.E. Paige, Gluon corrections to the Drell-Yan model, Phys. Rev. D 19 (1979) 221 [INSPIRE].

    ADS  Google Scholar 

  263. R. Hamberg, W.L. van Neerven and T. Matsuura, A complete calculation of the order α 2 s correction to the Drell-Yan K factor, Nucl. Phys. B 359 (1991) 343 [Erratum ibid. B 644 (2002)403] [INSPIRE].

  264. G.A. Ladinsky and C.-P. Yuan, The W -top background to heavy Higgs production, Phys. Rev. D 43 (1991) 789 [INSPIRE].

    ADS  Google Scholar 

  265. S. Moretti, Single top production in the tW ± channel and Higgs signals via HW + W at the Large Hadron Collider, Phys. Rev. D 56 (1997) 7427 [hep-ph/9705388] [INSPIRE].

  266. A. Heinson, A.S. Belyaev and E.E. Boos, Single top quarks at the Fermilab Tevatron, Phys. Rev. D 56 (1997) 3114 [hep-ph/9612424] [INSPIRE].

  267. A.S. Belyaev, E.E. Boos and L.V. Dudko, Single top quark at future hadron colliders: complete signal and background study, Phys. Rev. D 59 (1999) 075001 [hep-ph/9806332] [INSPIRE].

  268. T.M.P. Tait, The tW mode of single top production, Phys. Rev. D 61 (1999) 034001 [hep-ph/9909352] [INSPIRE].

  269. S. Frixione, E. Laenen, P. Motylinski, B.R. Webber and C.D. White, Single-top hadroproduction in association with a W boson, JHEP 07 (2008) 029 [arXiv:0805.3067] [INSPIRE].

    Article  ADS  Google Scholar 

  270. F. Maltoni, G. Ridolfi and M. Ubiali, b-initiated processes at the LHC: a reappraisal, JHEP 07 (2012) 022 [Erratum ibid. 04 (2013) 095] [arXiv:1203.6393] [INSPIRE].

  271. W. Buchmüller and C. Greub, Heavy Majorana neutrinos in electron-positron and electron-proton collisions, Nucl. Phys. B 363 (1991) 345 [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérémie Quevillon.

Additional information

ArXiv ePrint: 1601.03696v2

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Djouadi, A., Ellis, J., Godbole, R. et al. Future collider signatures of the possible 750 GeV state. J. High Energ. Phys. 2016, 205 (2016). https://doi.org/10.1007/JHEP03(2016)205

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2016)205

Keywords

  • Phenomenological Models
  • Supersymmetry Phenomenology