Disformally self-tuning gravity


We extend a previous self-tuning analysis of the most general scalar-tensor theory of gravity in four dimensions with second order field equations by considering a generalized coupling to the matter sector. Through allowing a disformal coupling to matter we are able to extend the Fab Four model and construct a new class of theories that are able to tune away the cosmological constant on Friedmann-Lemaitre-Robertson-Walker backgrounds.

A preprint version of the article is available at ArXiv.


  1. [1]

    S. Weinberg, The cosmological constant problem, Rev. Mod. Phys. 61 (1989) 1 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  2. [2]

    J. Polchinski, The cosmological constant and the string landscape, hep-th/0603249 [INSPIRE].

  3. [3]

    C.P. Burgess, The cosmological constant problem: why it’s hard to get dark energy from micro-physics, arXiv:1309.4133 [INSPIRE].

  4. [4]

    J. Martin, Everything you always wanted to know about the cosmological constant problem (but were afraid to ask), Comptes Rendus Physique 13 (2012) 566 [arXiv:1205.3365] [INSPIRE].

    ADS  Article  Google Scholar 

  5. [5]

    S. Nobbenhuis, Categorizing different approaches to the cosmological constant problem, Found. Phys. 36 (2006) 613 [gr-qc/0411093] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  6. [6]

    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, arXiv:1502.01589 [INSPIRE].

  7. [7]

    A. Padilla, Lectures on the cosmological constant problem, arXiv:1502.05296 [INSPIRE].

  8. [8]

    C. Brans and R.H. Dicke, Mach’s principle and a relativistic theory of gravitation, Phys. Rev. 124 (1961) 925 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  9. [9]

    C. Deffayet, G. Esposito-Farese and A. Vikman, Covariant Galileon, Phys. Rev. D 79 (2009) 084003 [arXiv:0901.1314] [INSPIRE].

    ADS  Google Scholar 

  10. [10]

    C. Deffayet, O. Pujolàs, I. Sawicki and A. Vikman, Imperfect dark energy from kinetic gravity braiding, JCAP 10 (2010) 026 [arXiv:1008.0048] [INSPIRE].

    ADS  Article  Google Scholar 

  11. [11]

    F.P. Silva and K. Koyama, Self-accelerating universe in Galileon cosmology, Phys. Rev. D 80 (2009) 121301 [arXiv:0909.4538] [INSPIRE].

    ADS  Google Scholar 

  12. [12]

    T. Kobayashi, M. Yamaguchi and J. Yokoyama, G-inflation: inflation driven by the Galileon field, Phys. Rev. Lett. 105 (2010) 231302 [arXiv:1008.0603] [INSPIRE].

    ADS  Article  Google Scholar 

  13. [13]

    A. De Felice and S. Tsujikawa, Generalized Galileon cosmology, Phys. Rev. D 84 (2011) 124029 [arXiv:1008.4236] [INSPIRE].

    ADS  Google Scholar 

  14. [14]

    T. Chiba, A. De Felice and S. Tsujikawa, Cosmological scaling solutions for multiple scalar fields, Phys. Rev. D 90 (2014) 023516 [arXiv:1403.7604] [INSPIRE].

    ADS  Google Scholar 

  15. [15]

    G. Gubitosi and E.V. Linder, Purely kinetic coupled gravity, Phys. Lett. B 703 (2011) 113 [arXiv:1106.2815] [INSPIRE].

    ADS  Article  Google Scholar 

  16. [16]

    R. de Putter and E.V. Linder, Kinetic k-essence and quintessence, Astropart. Phys. 28 (2007) 263 [arXiv:0705.0400] [INSPIRE].

    ADS  Article  Google Scholar 

  17. [17]

    C. van de Bruck, T. Koivisto and C. Longden, Disformally coupled inflation, JCAP 03 (2016) 006 [arXiv:1510.01650] [INSPIRE].

    Article  Google Scholar 

  18. [18]

    A. Nicolis, R. Rattazzi and E. Trincherini, The Galileon as a local modification of gravity, Phys. Rev. D 79 (2009) 064036 [arXiv:0811.2197] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  19. [19]

    G.W. Horndeski, Second-order scalar-tensor field equations in a four-dimensional space, Int. J. Theor. Phys. 10 (1974) 363 [INSPIRE].

    MathSciNet  Article  Google Scholar 

  20. [20]

    C. Deffayet, X. Gao, D.A. Steer and G. Zahariade, From k-essence to generalised Galileons, Phys. Rev. D 84 (2011) 064039 [arXiv:1103.3260] [INSPIRE].

    ADS  Google Scholar 

  21. [21]

    M.V. Ostrogradskiˇı, Mémoire sur les équations différentielles relatives au problème des isopérimetres (in French), Mém. Acad. Impér. Sci. St. Pétersbourg (1850).

  22. [22]

    K. Koyama, G. Niz and G. Tasinato, Effective theory for the Vainshtein mechanism from the Horndeski action, Phys. Rev. D 88 (2013) 021502 [arXiv:1305.0279] [INSPIRE].

    ADS  Google Scholar 

  23. [23]

    A. Anabalon, A. Cisterna and J. Oliva, Asymptotically locally AdS and flat black holes in Horndeski theory, Phys. Rev. D 89 (2014) 084050 [arXiv:1312.3597] [INSPIRE].

    ADS  Google Scholar 

  24. [24]

    T. Kobayashi, M. Yamaguchi and J. Yokoyama, Generalized G-inflation: inflation with the most general second-order field equations, Prog. Theor. Phys. 126 (2011) 511 [arXiv:1105.5723] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  25. [25]

    T.P. Sotiriou and S.-Y. Zhou, Black hole hair in generalized scalar-tensor gravity, Phys. Rev. Lett. 112 (2014) 251102 [arXiv:1312.3622] [INSPIRE].

    ADS  Article  Google Scholar 

  26. [26]

    C. Charmousis, E.J. Copeland, A. Padilla and P.M. Saffin, General second order scalar-tensor theory, self tuning and the Fab Four, Phys. Rev. Lett. 108 (2012) 051101 [arXiv:1106.2000] [INSPIRE].

    ADS  Article  Google Scholar 

  27. [27]

    C. Charmousis, E.J. Copeland, A. Padilla and P.M. Saffin, Self-tuning and the derivation of a class of scalar-tensor theories, Phys. Rev. D 85 (2012) 104040 [arXiv:1112.4866] [INSPIRE].

    ADS  Google Scholar 

  28. [28]

    E. Babichev, C. Charmousis, D. Langlois and R. Saito, Beyond Fab Four, Class. Quant. Grav. 32 (2015) 242001 [arXiv:1507.05942] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  29. [29]

    J.D. Bekenstein, The relation between physical and gravitational geometry, Phys. Rev. D 48 (1993) 3641 [gr-qc/9211017] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  30. [30]

    M. Zumalacarregui, T.S. Koivisto and D.F. Mota, DBI Galileons in the Einstein frame: local gravity and cosmology, Phys. Rev. D 87 (2013) 083010 [arXiv:1210.8016] [INSPIRE].

    ADS  Google Scholar 

  31. [31]

    J. Sakstein, Disformal theories of gravity: from the solar system to cosmology, JCAP 12 (2014) 012 [arXiv:1409.1734] [INSPIRE].

    ADS  Article  Google Scholar 

  32. [32]

    J. Sakstein, Towards viable cosmological models of disformal theories of gravity, Phys. Rev. D 91 (2015) 024036 [arXiv:1409.7296] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  33. [33]

    T.S. Koivisto, D.F. Mota and M. Zumalacarregui, Screening modifications of gravity through disformally coupled fields, Phys. Rev. Lett. 109 (2012) 241102 [arXiv:1205.3167] [INSPIRE].

    ADS  Article  Google Scholar 

  34. [34]

    T.S. Koivisto, Disformal quintessence, arXiv:0811.1957 [INSPIRE].

  35. [35]

    P. Brax and C. Burrage, Constraining disformally coupled scalar fields, Phys. Rev. D 90 (2014) 104009 [arXiv:1407.1861] [INSPIRE].

    ADS  Google Scholar 

  36. [36]

    M. Zumalacárregui and J. García-Bellido, Transforming gravity: from derivative couplings to matter to second-order scalar-tensor theories beyond the Horndeski Lagrangian, Phys. Rev. D 89 (2014) 064046 [arXiv:1308.4685] [INSPIRE].

  37. [37]

    D. Bettoni and S. Liberati, Disformal invariance of second order scalar-tensor theories: framing the Horndeski action, Phys. Rev. D 88 (2013) 084020 [arXiv:1306.6724] [INSPIRE].

    ADS  Google Scholar 

  38. [38]

    J. Gleyzes, D. Langlois, F. Piazza and F. Vernizzi, Healthy theories beyond Horndeski, Phys. Rev. Lett. 114 (2015) 211101 [arXiv:1404.6495] [INSPIRE].

    ADS  Article  Google Scholar 

  39. [39]

    C. Lin, S. Mukohyama, R. Namba and R. Saitou, Hamiltonian structure of scalar-tensor theories beyond Horndeski, JCAP 10 (2014) 071 [arXiv:1408.0670] [INSPIRE].

    ADS  Article  Google Scholar 

  40. [40]

    J. Gleyzes, D. Langlois, F. Piazza and F. Vernizzi, Exploring gravitational theories beyond Horndeski, JCAP 02 (2015) 018 [arXiv:1408.1952] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  41. [41]

    T. Kobayashi, Y. Watanabe and D. Yamauchi, Breaking of Vainshtein screening in scalar-tensor theories beyond Horndeski, Phys. Rev. D 91 (2015) 064013 [arXiv:1411.4130] [INSPIRE].

    ADS  Google Scholar 

  42. [42]

    X. Gao, Unifying framework for scalar-tensor theories of gravity, Phys. Rev. D 90 (2014) 081501 [arXiv:1406.0822] [INSPIRE].

    ADS  Google Scholar 

  43. [43]

    X. Gao, Hamiltonian analysis of spatially covariant gravity, Phys. Rev. D 90 (2014) 104033 [arXiv:1409.6708] [INSPIRE].

    ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information



Corresponding author

Correspondence to William T. Emond.

Additional information

ArXiv ePrint: 1511.02055v3

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Emond, W.T., Saffin, P.M. Disformally self-tuning gravity. J. High Energ. Phys. 2016, 161 (2016). https://doi.org/10.1007/JHEP03(2016)161

Download citation


  • Classical Theories of Gravity
  • Cosmology of Theories beyond the SM