Skip to main content

Upper bounds on sparticle masses from muon g − 2 and the Higgs mass and the complementarity of future colliders

A preprint version of the article is available at arXiv.

Abstract

Supersymmetric (SUSY) explanation of the discrepancy between the measurement of (g − 2) μ and its SM prediction puts strong upper bounds on the chargino and smuon masses. At the same time, lower experimental limits on the chargino and smuon masses, combined with the Higgs mass measurement, lead to an upper bound on the stop masses. The current LHC limits on the chargino and smuon masses (for not too compressed spectrum) set the upper bound on the stop masses of about 10 TeV. The discovery potential of the future lepton and hadron colliders should lead to the discovery of SUSY if it is responsible for the explanation of the (g − 2) μ anomaly. This conclusion follows from the fact that the upper bound on the stop masses decreases with the increase of the lower experimental limit on the chargino and smuon masses.

References

  1. M. Papucci, J.T. Ruderman and A. Weiler, Natural SUSY endures, JHEP 09 (2012) 035 [arXiv:1110.6926] [INSPIRE].

    Article  ADS  Google Scholar 

  2. N. Craig, M. McCullough and J. Thaler, Flavor mediation delivers natural SUSY, JHEP 06 (2012) 046 [arXiv:1203.1622] [INSPIRE].

    Article  ADS  Google Scholar 

  3. M. Badziak, E. Dudas, M. Olechowski and S. Pokorski, Inverted sfermion mass hierarchy and the Higgs boson mass in the MSSM, JHEP 07 (2012) 155 [arXiv:1205.1675] [INSPIRE].

    Article  ADS  Google Scholar 

  4. G.G. Ross and K. Schmidt-Hoberg, The fine-tuning of the generalised NMSSM, Nucl. Phys. B 862 (2012) 710 [arXiv:1108.1284] [INSPIRE].

    Article  ADS  Google Scholar 

  5. L.J. Hall, D. Pinner and J.T. Ruderman, A natural SUSY Higgs near 126 GeV, JHEP 04 (2012) 131 [arXiv:1112.2703] [INSPIRE].

    Article  ADS  Google Scholar 

  6. T. Gherghetta, B. von Harling, A.D. Medina and M.A. Schmidt, The scale-invariant NMSSM and the 126 GeV Higgs boson, JHEP 02 (2013) 032 [arXiv:1212.5243] [INSPIRE].

    Article  ADS  Google Scholar 

  7. N. Arkani-Hamed and S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06 (2005) 073 [hep-th/0405159] [INSPIRE].

    Article  ADS  Google Scholar 

  8. G.F. Giudice and A. Romanino, Split supersymmetry, Nucl. Phys. B 699 (2004) 65 [Erratum ibid. B 706 (2005) 65] [hep-ph/0406088] [INSPIRE].

  9. G. Elor, L.J. Hall, D. Pinner and J.T. Ruderman, Yukawa unification and the superpartner mass scale, JHEP 10 (2012) 111 [arXiv:1206.5301] [INSPIRE].

    Article  ADS  Google Scholar 

  10. L.J. Hall, J.T. Ruderman and T. Volansky, A cosmological upper bound on superpartner masses, JHEP 02 (2015) 094 [arXiv:1302.2620] [INSPIRE].

    Article  ADS  Google Scholar 

  11. Muon G-2 collaboration, G.W. Bennett et al., Final report of the muon E821 anomalous magnetic moment measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].

    Google Scholar 

  12. M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Reevaluation of the hadronic contributions to the muon g − 2 and to α MZ , Eur. Phys. J. C 71 (2011) 1515 [Erratum ibid. C 72 (2012) 1874] [arXiv:1010.4180] [INSPIRE].

  13. K. Hagiwara, R. Liao, A.D. Martin, D. Nomura and T. Teubner, (g − 2) μ and α(M 2 Z ) re-evaluated using new precise data, J. Phys. G 38 (2011) 085003 [arXiv:1105.3149] [INSPIRE].

    Article  ADS  Google Scholar 

  14. M. Benayoun, P. David, L. DelBuono and F. Jegerlehner, An update of the HLS estimate of the muon g − 2, Eur. Phys. J. C 73 (2013) 2453 [arXiv:1210.7184] [INSPIRE].

    Article  ADS  Google Scholar 

  15. D. Stöckinger, The muon magnetic moment and supersymmetry, J. Phys. G 34 (2007) R45 [hep-ph/0609168] [INSPIRE].

    Article  ADS  Google Scholar 

  16. S.P. Martin and J.D. Wells, Muon anomalous magnetic dipole moment in supersymmetric theories, Phys. Rev. D 64 (2001) 035003 [hep-ph/0103067] [INSPIRE].

    ADS  Google Scholar 

  17. M.E. Cabrera, J.A. Casas and A. Delgado, Upper bounds on superpartner masses from upper bounds on the Higgs boson mass, Phys. Rev. Lett. 108 (2012) 021802 [arXiv:1108.3867] [INSPIRE].

    Article  ADS  Google Scholar 

  18. G.F. Giudice and A. Strumia, Probing high-scale and split supersymmetry with Higgs mass measurements, Nucl. Phys. B 858 (2012) 63 [arXiv:1108.6077] [INSPIRE].

    Article  ADS  Google Scholar 

  19. M. Endo, K. Hamaguchi, T. Kitahara and T. Yoshinaga, Probing bino contribution to muon g − 2, JHEP 11 (2013) 013 [arXiv:1309.3065] [INSPIRE].

    Article  ADS  Google Scholar 

  20. A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi and J. Quevillon, Implications of a 125 GeV Higgs for supersymmetric models, Phys. Lett. B 708 (2012) 162 [arXiv:1112.3028] [INSPIRE].

    Article  ADS  Google Scholar 

  21. S. Mohanty, S. Rao and D.P. Roy, Reconciling the muon g − 2 and dark matter relic density with the LHC results in nonuniversal gaugino mass models, JHEP 09 (2013) 027 [arXiv:1303.5830] [INSPIRE].

    Article  ADS  Google Scholar 

  22. S. Akula and P. Nath, Gluino-driven radiative breaking, Higgs boson mass, muon g − 2 and the Higgs diphoton decay in supergravity unification, Phys. Rev. D 87 (2013) 115022 [arXiv:1304.5526] [INSPIRE].

    ADS  Google Scholar 

  23. J. Chakrabortty, S. Mohanty and S. Rao, Non-universal gaugino mass GUT models in the light of dark matter and LHC constraints, JHEP 02 (2014) 074 [arXiv:1310.3620] [INSPIRE].

    Article  ADS  Google Scholar 

  24. I. Gogoladze, F. Nasir, Q. Shafi and C.S. Un, Nonuniversal gaugino masses and muon g − 2, Phys. Rev. D 90 (2014) 035008 [arXiv:1403.2337] [INSPIRE].

    ADS  Google Scholar 

  25. S.P. Martin, Non-universal gaugino masses from non-singlet F-terms in non-minimal unified models, Phys. Rev. D 79 (2009) 095019 [arXiv:0903.3568] [INSPIRE].

    ADS  Google Scholar 

  26. M. Badziak, M. Olechowski and S. Pokorski, Light staus and enhanced Higgs diphoton rate with non-universal gaugino masses and SO(10) Yukawa unification, JHEP 10 (2013) 088 [arXiv:1307.7999] [INSPIRE].

    Article  ADS  Google Scholar 

  27. T. Moroi, The muon anomalous magnetic dipole moment in the minimal supersymmetric standard model, Phys. Rev. D 53 (1996) 6565 [Erratum ibid. D 56 (1997) 4424] [hep-ph/9512396] [INSPIRE].

  28. Particle Data Group collaboration, J. Beringer et al., Review of particle physics, Phys. Rev. D 86 (2012) 010001 [INSPIRE].

    Google Scholar 

  29. ALEPH collaboration, A. Heister et al., Search for scalar leptons in e + e collisions at center-of-mass energies up to 209 GeV, Phys. Lett. B 526 (2002) 206 [hep-ex/0112011] [INSPIRE].

    ADS  Google Scholar 

  30. DELPHI collaboration, J. Abdallah et al., Searches for supersymmetric particles in e + e collisions up to 208 GeV and interpretation of the results within the MSSM, Eur. Phys. J. C 31 (2003) 421 [hep-ex/0311019] [INSPIRE].

    Google Scholar 

  31. L3 collaboration, P. Achard et al., Search for scalar leptons and scalar quarks at LEP, Phys. Lett. B 580 (2004) 37 [hep-ex/0310007] [INSPIRE].

    ADS  Google Scholar 

  32. OPAL collaboration, G. Abbiendi et al., Search for anomalous production of dilepton events with missing transverse momentum in e + e collisions at \( \sqrt{s}=183 \) Gev to 209-GeV, Eur. Phys. J. C 32 (2004) 453 [hep-ex/0309014] [INSPIRE].

    ADS  Google Scholar 

  33. EP2 SUSY working group, http://lepsusy.web.cern.ch/lepsusy/www/sleptons_summer04/slep final.html.

  34. ATLAS collaboration, Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in \( \sqrt{s}=8 \) TeV pp collisions with the ATLAS detector, JHEP 04 (2014) 169 [arXiv:1402.7029] [INSPIRE].

    ADS  Google Scholar 

  35. ATLAS collaboration, Search for direct production of charginos, neutralinos and sleptons in final states with two leptons and missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 05 (2014) 071 [arXiv:1403.5294] [INSPIRE].

    ADS  Google Scholar 

  36. CMS collaboration, Searches for electroweak production of charginos, neutralinos and sleptons decaying to leptons and W, Z and Higgs bosons in pp collisions at 8 TeV, Eur. Phys. J. C 74 (2014) 3036 [arXiv:1405.7570] [INSPIRE].

    Google Scholar 

  37. P. Schwaller and J. Zurita, Compressed electroweakino spectra at the LHC, JHEP 03 (2014) 060 [arXiv:1312.7350] [INSPIRE].

    Article  ADS  Google Scholar 

  38. Fermilab E989 collaboration, G. Venanzoni, The new g − 2 experiment at Fermilab, Frascati Phys. Ser. 56 (2012) 195 [INSPIRE].

    Google Scholar 

  39. J-PARC New g-2/EDM experiment collaboration, H. Iinuma, New approach to the muon g − 2 and EDM experiment at J-PARC, J. Phys. Conf. Ser. 295 (2011) 012032 [INSPIRE].

    Article  ADS  Google Scholar 

  40. H.G. Fargnoli et al., Non-decoupling two-loop corrections to (g − 2) μ from fermion/sfermion loops in the MSSM, Phys. Lett. B 726 (2013) 717 [arXiv:1309.0980] [INSPIRE].

    Article  ADS  Google Scholar 

  41. D. Chowdhury, R.M. Godbole, K.A. Mohan and S.K. Vempati, Charge and color breaking constraints in MSSM after the Higgs discovery at LHC, JHEP 02 (2014) 110 [arXiv:1310.1932] [INSPIRE].

    Article  ADS  Google Scholar 

  42. N. Blinov and D.E. Morrissey, Vacuum stability and the MSSM Higgs mass, JHEP 03 (2014) 106 [arXiv:1310.4174] [INSPIRE].

    Article  ADS  Google Scholar 

  43. J.E. Camargo-Molina, B. Garbrecht, B. O’Leary, W. Porod and F. Staub, Constraining the Natural MSSM through tunneling to color-breaking vacua at zero and non-zero temperature, Phys. Lett. B 737 (2014) 156 [arXiv:1405.7376] [INSPIRE].

    Article  ADS  Google Scholar 

  44. S. Heinemeyer, W. Hollik and G. Weiglein, FeynHiggs: a program for the calculation of the masses of the neutral CP even Higgs bosons in the MSSM, Comput. Phys. Commun. 124 (2000) 76 [hep-ph/9812320] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  45. T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak and G. Weiglein, High-precision predictions for the light CP-even Higgs boson mass of the minimal supersymmetric standard model, Phys. Rev. Lett. 112 (2014) 141801 [arXiv:1312.4937] [INSPIRE].

    Article  ADS  Google Scholar 

  46. ATLAS collaboration, Measurement of the Higgs boson mass from the Hγγ and HZZ * →4ℓ channels with the ATLAS detector using 25 fb −1 of pp collision data, Phys. Rev. D 90 (2014) 052004 [arXiv:1406.3827] [INSPIRE].

    ADS  Google Scholar 

  47. CMS collaboration, Precise determination of the mass of the Higgs boson and studies of the compatibility of its couplings with the standard model, CMS-PAS-HIG-14-009 (2014).

  48. ATLAS collaboration, Search for neutral Higgs bosons of the minimal supersymmetric standard model in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, ATLAS-CONF-2014-049 (2014) [ATLAS-COM-CONF-2014-062].

  49. CMS collaboration, Search for neutral MSSM Higgs bosons decaying to a pair of τ leptons in pp collisions, JHEP 10 (2014) 160 [arXiv:1408.3316] [INSPIRE].

    Google Scholar 

  50. ATLAS collaboration, Constraints on New Phenomena via Higgs Coupling Measurements with the ATLAS Detector, ATLAS-CONF-2014-010 (2014) [ATLAS-COM-CONF-2014-011].

  51. ATLAS, CDF, CMS, D0 collaboration, First combination of Tevatron and LHC measurements of the top-quark mass, arXiv:1403.4427 [INSPIRE].

  52. P. Draper, G. Lee and C.E.M. Wagner, Precise estimates of the Higgs mass in heavy supersymmetry, Phys. Rev. D 89 (2014) 055023 [arXiv:1312.5743] [INSPIRE].

    ADS  Google Scholar 

  53. E. Bagnaschi, G.F. Giudice, P. Slavich and A. Strumia, Higgs mass and unnatural supersymmetry, JHEP 09 (2014) 092 [arXiv:1407.4081] [INSPIRE].

    Article  ADS  Google Scholar 

  54. M. Endo, K. Hamaguchi, S. Iwamoto and T. Yoshinaga, Muon g − 2 vs. LHC in supersymmetric models, JHEP 01 (2014) 123 [arXiv:1303.4256] [INSPIRE].

    Article  ADS  Google Scholar 

  55. ILC collaboration, G. Aarons et al., International Linear Collider reference design report volume 2: physics at the ILC, arXiv:0709.1893 [INSPIRE].

  56. TLEP Design Study Working Group collaboration, M. Bicer et al., First look at the physics case of TLEP, JHEP 01 (2014) 164 [arXiv:1308.6176] [INSPIRE].

    Google Scholar 

  57. T. Cohen et al., SUSY simplified models at 14, 33 and 100 TeV proton colliders, JHEP 04 (2014) 117 [arXiv:1311.6480] [INSPIRE].

    Article  ADS  Google Scholar 

  58. A. Fowlie and M. Raidal, Prospects for constrained supersymmetry at \( \sqrt{s}=33 \) TeV and \( \sqrt{s}=100 \) TeV proton-proton super-colliders, Eur. Phys. J. C 74 (2014) 2948 [arXiv:1402.5419] [INSPIRE].

    Article  ADS  Google Scholar 

  59. T. Cohen, R.T. D’Agnolo, M. Hance, H.K. Lou and J.G. Wacker, Boosting stop searches with a 100 TeV proton collider, JHEP 11 (2014) 021 [arXiv:1406.4512] [INSPIRE].

    Article  ADS  Google Scholar 

  60. U. Ellwanger, C. Hugonie and A.M. Teixeira, The next-to-minimal supersymmetric standard model, Phys. Rept. 496 (2010) 1 [arXiv:0910.1785] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  61. F. Domingo and U. Ellwanger, Constraints from the muon g − 2 on the parameter space of the NMSSM, JHEP 07 (2008) 079 [arXiv:0806.0733] [INSPIRE].

    Article  ADS  Google Scholar 

  62. F. Brummer, S. Kraml and S. Kulkarni, Anatomy of maximal stop mixing in the MSSM, JHEP 08 (2012) 089 [arXiv:1204.5977] [INSPIRE].

    Article  ADS  Google Scholar 

  63. M. Badziak, M. Olechowski and S. Pokorski, New regions in the NMSSM with a 125 GeV Higgs, JHEP 06 (2013) 043 [arXiv:1304.5437] [INSPIRE].

    Article  ADS  Google Scholar 

  64. CLIC Physics Working Group collaboration, E. Accomando et al., Physics at the CLIC multi-TeV linear collider, hep-ph/0412251 [INSPIRE].

  65. J. Kersten, J.-h. Park, D. Stöckinger and L. Velasco-Sevilla, Understanding the correlation between (g − 2) μ and μeγ in the MSSM, JHEP 08 (2014) 118 [arXiv:1405.2972] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Badziak.

Additional information

ArXiv ePrint: 1411.1450

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Badziak, M., Lalak, Z., Lewicki, M. et al. Upper bounds on sparticle masses from muon g − 2 and the Higgs mass and the complementarity of future colliders. J. High Energ. Phys. 2015, 3 (2015). https://doi.org/10.1007/JHEP03(2015)003

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2015)003

Keywords

  • Supersymmetry Phenomenology