S.P. Martin, A supersymmetry primer, in Perspectives on supersymmetry II, G.L. Kane ed., World Scientific, Singapore (2010), hep-ph/9709356 [INSPIRE].
R. Barbieri and G. Giudice, Upper bounds on supersymmetric particle masses, Nucl. Phys.
B 306 (1988) 63 [INSPIRE].
ADS
Article
Google Scholar
C. Wymant, Optimising stop naturalness, Phys. Rev.
D 86 (2012) 115023 [arXiv:1208.1737] [INSPIRE].
ADS
Google Scholar
ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett.
B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
ADS
Google Scholar
CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett.
B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
ADS
Google Scholar
L.J. Hall, D. Pinner and J.T. Ruderman, A natural SUSY Higgs near 126 GeV, JHEP
04 (2012) 131 [arXiv:1112.2703] [INSPIRE].
ADS
Article
Google Scholar
J.-J. Cao, Z.-X. Heng, J.M. Yang, Y.-M. Zhang and J.-Y. Zhu, A SM-like Higgs near 125 GeV in low energy SUSY: a comparative study for MSSM and NMSSM, JHEP
03 (2012) 086 [arXiv:1202.5821] [INSPIRE].
ADS
Article
Google Scholar
J.R. Ellis, G. Ridolfi and F. Zwirner, Radiative corrections to the masses of supersymmetric Higgs bosons, Phys. Lett.
B 257 (1991) 83 [INSPIRE].
ADS
Article
Google Scholar
H.E. Haber and R. Hempfling, Can the mass of the lightest Higgs boson of the minimal supersymmetric model be larger than m(Z)?, Phys. Rev. Lett.
66 (1991) 1815 [INSPIRE].
ADS
Article
Google Scholar
M.S. Carena et al., Reconciling the two loop diagrammatic and effective field theory computations of the mass of the lightest CP-even Higgs boson in the MSSM, Nucl. Phys.
B 580 (2000) 29 [hep-ph/0001002] [INSPIRE].
ADS
Article
Google Scholar
P. Draper, P. Meade, M. Reece and D. Shih, Implications of a 125 GeV Higgs for the MSSM and low-scale SUSY breaking, Phys. Rev.
D 85 (2012) 095007 [arXiv:1112.3068] [INSPIRE].
ADS
Google Scholar
J. Casas, J. Espinosa, M. Quirós and A. Riotto, The lightest Higgs boson mass in the minimal supersymmetric standard model, Nucl. Phys.
B 436 (1995) 3 [Erratum ibid.
B 439 (1995) 466] [hep-ph/9407389] [INSPIRE].
R. Kitano and Y. Nomura, Supersymmetry, naturalness and signatures at the LHC, Phys. Rev.
D 73 (2006) 095004 [hep-ph/0602096] [INSPIRE].
ADS
Google Scholar
J.M. Frere, D.R.T. Jones and S. Raby, Fermion masses and induction of the weak scale by supergravity, Nucl. Phys.
B 222 (1983) 11 [INSPIRE].
ADS
Article
Google Scholar
M. Claudson, L.J. Hall and I. Hinchliffe, Low-energy supergravity: false vacua and vacuous predictions, Nucl. Phys.
B 228 (1983) 501 [INSPIRE].
ADS
Article
Google Scholar
G. Gamberini, G. Ridolfi and F. Zwirner, On radiative gauge symmetry breaking in the minimal supersymmetric model, Nucl. Phys.
B 331 (1990) 331 [INSPIRE].
ADS
Article
Google Scholar
J.A. Casas, A. Lleyda and C. Muñoz, Strong constraints on the parameter space of the MSSM from charge and color breaking minima, Nucl. Phys.
B 471 (1996) 3 [hep-ph/9507294] [INSPIRE].
ADS
Article
Google Scholar
T. Falk, K.A. Olive, L. Roszkowski and M. Srednicki, New constraints on superpartner masses, Phys. Lett.
B 367 (1996) 183 [hep-ph/9510308] [INSPIRE].
ADS
Article
Google Scholar
A. Riotto and E. Roulet, Vacuum decay along supersymmetric flat directions, Phys. Lett.
B 377 (1996) 60 [hep-ph/9512401] [INSPIRE].
ADS
Article
MathSciNet
Google Scholar
A. Kusenko, P. Langacker and G. Segre, Phase transitions and vacuum tunneling into charge and color breaking minima in the MSSM, Phys. Rev.
D 54 (1996) 5824 [hep-ph/9602414] [INSPIRE].
ADS
Google Scholar
J. Casas, A. Lleyda and C. Muñoz, Some implications of charge and color breaking in the MSSM, Phys. Lett.
B 389 (1996) 305 [hep-ph/9606212] [INSPIRE].
ADS
Article
Google Scholar
C. Le Mouel, Optimal charge and color breaking conditions in the MSSM, Nucl. Phys.
B 607 (2001) 38 [hep-ph/0101351] [INSPIRE].
ADS
Article
Google Scholar
C. Le Mouel, Charge and color breaking conditions associated to the top quark Yukawa coupling, Phys. Rev.
D 64 (2001) 075009 [hep-ph/0103341] [INSPIRE].
ADS
Google Scholar
M.S. Carena, M. Quirós and C. Wagner, Opening the window for electroweak baryogenesis, Phys. Lett.
B 380 (1996) 81 [hep-ph/9603420] [INSPIRE].
ADS
Article
Google Scholar
J.M. Cline, G.D. Moore and G. Servant, Was the electroweak phase transition preceded by a color broken phase?, Phys. Rev.
D 60 (1999) 105035 [hep-ph/9902220] [INSPIRE].
ADS
Google Scholar
H.H. Patel, M.J. Ramsey-Musolf and M.B. Wise, Color breaking in the early universe, Phys. Rev.
D 88 (2013) 015003 [arXiv:1303.1140] [INSPIRE].
ADS
Google Scholar
B.M. Kastening, Renormalization group improvement of the effective potential in massive phi**4 theory, Phys. Lett.
B 283 (1992) 287 [INSPIRE].
ADS
Article
Google Scholar
C. Ford, D.R.T. Jones, P.W. Stephenson and M.B. Einhorn, The effective potential and the renormalization group, Nucl. Phys.
B 395 (1993) 17 [hep-lat/9210033] [INSPIRE].
ADS
Article
Google Scholar
R. Jackiw, Functional evaluation of the effective potential, Phys. Rev.
D 9 (1974) 1686 [INSPIRE].
ADS
Google Scholar
H.H. Patel and M.J. Ramsey-Musolf, Baryon washout, electroweak phase transition and perturbation theory, JHEP
07 (2011) 029 [arXiv:1101.4665] [INSPIRE].
ADS
Article
Google Scholar
N.K. Nielsen, On the gauge dependence of spontaneous symmetry breaking in gauge theories, Nucl. Phys.
B 101 (1975) 173 [INSPIRE].
ADS
Article
Google Scholar
R. Fukuda and T. Kugo, Gauge invariance in the effective action and potential, Phys. Rev.
D 13 (1976) 3469 [INSPIRE].
ADS
Google Scholar
M. Garny and T. Konstandin, On the gauge dependence of vacuum transitions at finite temperature, JHEP
07 (2012) 189 [arXiv:1205.3392] [INSPIRE].
ADS
Article
Google Scholar
D. Metaxas and E.J. Weinberg, Gauge independence of the bubble nucleation rate in theories with radiative symmetry breaking, Phys. Rev.
D 53 (1996) 836 [hep-ph/9507381] [INSPIRE].
ADS
Google Scholar
F. James and M. Roos, Minuit: a system for function minimization and analysis of the parameter errors and correlations, Comput. Phys. Commun.
10 (1975) 343 [INSPIRE]
ADS
Article
Google Scholar
http://lcgapp.cern.ch/project/cls/work-packages/mathlibs/minuit/index.html.
S.R. Coleman, The fate of the false vacuum. 1. Semiclassical theory, Phys. Rev.
D 15 (1977) 2929 [Erratum ibid.
D 16 (1977) 1248] [INSPIRE].
C.G. Callan Jr. and S.R. Coleman, The fate of the false vacuum. 2. First quantum corrections, Phys. Rev.
D 16 (1977) 1762 [INSPIRE].
ADS
Google Scholar
G.V. Dunne and H. Min, Beyond the thin-wall approximation: Precise numerical computation of prefactors in false vacuum decay, Phys. Rev.
D 72 (2005) 125004 [hep-th/0511156] [INSPIRE].
ADS
Google Scholar
H. Min, On the prefactor in false vacuum decay, J. Phys.
A 39 (2006) 6551 [INSPIRE].
ADS
Google Scholar
E.J. Weinberg, Vacuum decay in theories with symmetry breaking by radiative corrections, Phys. Rev.
D 47 (1993) 4614 [hep-ph/9211314] [INSPIRE].
ADS
Google Scholar
A. Kusenko, Improved action method for analyzing tunneling in quantum field theory, Phys. Lett.
B 358 (1995) 51 [hep-ph/9504418] [INSPIRE].
ADS
Article
MathSciNet
Google Scholar
T. Konstandin and S.J. Huber, Numerical approach to multi dimensional phase transitions, JCAP
06 (2006) 021 [hep-ph/0603081] [INSPIRE].
ADS
Article
Google Scholar
J.-h. Park, Constrained potential method for false vacuum decays, JCAP
02 (2011) 023 [arXiv:1011.4936] [INSPIRE].
ADS
Article
Google Scholar
C.L. Wainwright, CosmoTransitions: computing cosmological phase transition temperatures and bubble profiles with multiple fields, Comput. Phys. Commun.
183 (2012) 2006 [arXiv:1109.4189] [INSPIRE].
ADS
Article
Google Scholar
J. Camargo-Molina, B. O’Leary, W. Porod and F. Staub, Vevacious: a tool for finding the global minima of one-loop effective potentials with many scalars, Eur. Phys. J.
C 73 (2013) 2588 [arXiv:1307.1477] [INSPIRE].
ADS
Article
Google Scholar
M. Reece, Vacuum instabilities with a wrong-sign Higgs-gluon-gluon amplitude, New J. Phys.
15 (2013) 043003 [arXiv:1208.1765] [INSPIRE].
ADS
Article
Google Scholar
S. Heinemeyer, W. Hollik and G. Weiglein, FeynHiggs: a program for the calculation of the masses of the neutral CP even Higgs bosons in the MSSM, Comput. Phys. Commun.
124 (2000) 76 [hep-ph/9812320] [INSPIRE].
ADS
Article
MATH
Google Scholar
A. Djouadi, J.-L. Kneur and G. Moultaka, SuSpect: a Fortran code for the supersymmetric and Higgs particle spectrum in the MSSM, Comput. Phys. Commun.
176 (2007) 426 [hep-ph/0211331] [INSPIRE].
ADS
Article
MATH
Google Scholar
Particle Data Group collaboration, J. Beringer et al., Review of particle physics, Phys. Rev.
D 86 (2012) 010001 [INSPIRE].
ADS
Google Scholar
V. Barger, P. Huang, M. Ishida and W.-Y. Keung, Scalar-top masses from SUSY loops with 125 GeV mh and precise Mw, Phys. Lett.
B 718 (2013) 1024 [arXiv:1206.1777] [INSPIRE].
ADS
Article
Google Scholar
S. Heinemeyer, O. Stal and G. Weiglein, Interpreting the LHC Higgs search results in the MSSM, Phys. Lett.
B 710 (2012) 201 [arXiv:1112.3026] [INSPIRE].
ADS
Article
Google Scholar
J.R. Espinosa, C. Grojean, V. Sanz and M. Trott, NSUSY fits, JHEP
12 (2012) 077 [arXiv:1207.7355] [INSPIRE].
ADS
Article
Google Scholar
M. Drees and K. Hagiwara, Supersymmetric contribution to the electroweak ρ parameter, Phys. Rev.
D 42 (1990) 1709 [INSPIRE].
ADS
Google Scholar
S. Heinemeyer, W. Hollik and G. Weiglein, Electroweak precision observables in the minimal supersymmetric standard model, Phys. Rept.
425 (2006) 265 [hep-ph/0412214] [INSPIRE].
ADS
Article
Google Scholar
G. D’Ambrosio, G. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: an effective field theory approach, Nucl. Phys.
B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].
ADS
Article
Google Scholar
M. Ciuchini, G. Degrassi, P. Gambino and G. Giudice, Next-to-leading QCD corrections to B → X
s
γ in supersymmetry, Nucl. Phys.
B 534 (1998) 3 [hep-ph/9806308] [INSPIRE].
ADS
Google Scholar
B. Grzadkowski and M. Misiak, Anomalous Wtb coupling effects in the weak radiative B-meson decay, Phys. Rev.
D 78 (2008) 077501 [Erratum ibid.
D 84 (2011) 059903] [arXiv:0802.1413] [INSPIRE].
Heavy Flavor Averaging Group collaboration, Y. Amhis et al., Averages of B-hadron, C-hadron and τ-lepton properties as of early 2012, arXiv:1207.1158 [INSPIRE].
A. Arbey and F. Mahmoudi, SuperIso relic: a program for calculating relic density and flavor physics observables in Supersymmetry, Comput. Phys. Commun.
181 (2010) 1277 [arXiv:0906.0369] [INSPIRE].
ADS
Article
MATH
Google Scholar
ATLAS collaboration, Search for direct third-generation squark pair production in final states with missing transverse momentum and two b-jets in
\( \sqrt{s} \) = 8 TeV pp collisions with the ATLAS detector, JHEP
10 (2013) 189 [arXiv:1308.2631] [INSPIRE].
ADS
Google Scholar
ATLAS collaboration, Search for pair-produced top squarks decaying into a charm quark and the lightest neutralinos with 20.3 fb
−1
of pp collisions at
\( \sqrt{s} \) = 8 TeV with the ATLAS detector at the LHC, ATLAS-CONF-2013-068 (2013).
CMS collaboration, Search for top-squark pair production in the single-lepton final state in pp collisions at
\( \sqrt{s} \) = 8 TeV, Eur. Phys. J.
C 73 (2013) 2677 [arXiv:1308.1586] [INSPIRE].
ADS
Google Scholar
CMS collaboration, Search for supersymmetry using razor variables in events with b-jets in pp collisions at 8 TeV, CMS-PAS-SUS-13-004 (2013).
M. Carena, G. Nardini, M. Quirós and C.E.M. Wagner, The effective theory of the light stop scenario, JHEP
10 (2008) 062 [arXiv:0806.4297] [INSPIRE].
ADS
Article
Google Scholar
J. Fan and M. Reece, A new look at Higgs constraints on stops, arXiv:1401.7671 [INSPIRE].
J. Hisano, K. Kawagoe, R. Kitano and M.M. Nojiri, Scenery from the top: study of the third generation squarks at CERN LHC, Phys. Rev.
D 66 (2002) 115004 [hep-ph/0204078] [INSPIRE].
ADS
Google Scholar
K. Rolbiecki, J. Tattersall and G. Moortgat-Pick, Towards measuring the stop mixing angle at the LHC, Eur. Phys. J.
C 71 (2011) 1517 [arXiv:0909.3196] [INSPIRE].
ADS
Google Scholar
M. Blanke, D. Curtin and M. Perelstein, SUSY-Yukawa sum rule at the LHC, Phys. Rev.
D 82 (2010)035020 [arXiv:1004.5350] [INSPIRE].
ADS
Google Scholar
M. Perelstein and M. Saelim, SUSY-Yukawa sum rule at the LHC and the ILC, arXiv:1201.5839 [INSPIRE].
M. Berggren, R. Keranen, H. Kluge and A. Sopczak, Study of scalar top quarks at a future e
+
e
−
linear collider, hep-ph/9911345 [INSPIRE].
E. Boos et al., Polarization in sfermion decays: determining tan β and trilinear couplings, Eur. Phys. J.
C 30 (2003) 395 [hep-ph/0303110] [INSPIRE].
ADS
Article
Google Scholar
G.F. Giudice and A. Kusenko, A strongly interacting phase of the minimal supersymmetric model, Phys. Lett.
B 439 (1998) 55 [hep-ph/9805379] [INSPIRE].
ADS
Article
Google Scholar
P. Hernández, N. Rius and V. Sanz, Trilinear couplings and scalar bound states in supersymmetric extensions of the standard model, Nucl. Phys. Proc. Suppl.
95 (2001) 272 [INSPIRE].
ADS
Article
Google Scholar
J.M. Cornwall, A. Kusenko, L. Pearce and R. Peccei, Can supersymmetry breaking lead to electroweak symmetry breaking via formation of scalar bound states?, Phys. Lett.
B 718 (2013)951 [arXiv:1210.6433] [INSPIRE].
ADS
Article
Google Scholar
L. Pearce, A. Kusenko and R.D. Peccei, Phenomenology of supersymmetric models with a symmetry-breaking seesaw mechanism, Phys. Rev.
D 88 (2013) 075011 [arXiv:1307.6157] [INSPIRE].
ADS
Google Scholar
J. Camargo-Molina, B. O’Leary, W. Porod and F. Staub, Stability of the CMSSM against sfermion VEVs, JHEP
12 (2013) 103 [arXiv:1309.7212] [INSPIRE].
ADS
Article
Google Scholar
D. Chowdhury, R.M. Godbole, K.A. Mohan and S.K. Vempati, Charge and color breaking constraints in MSSM after the Higgs discovery at LHC, arXiv:1310.1932 [INSPIRE].
N. Blinov and D.E. Morrissey, Charge and color breaking constraints in the minimal supersymmetric standard model, arXiv:1309.7397 [INSPIRE].