Abstract
We compute the one-loop beta functions of the cosmological constant, Newton’s constant and the topological mass in topologically massive supergravity in three dimensions. We use a variant of the proper time method supplemented by a simple choice of cutoff function. We also employ two different analytic continuations of AdS 3 and consider harmonic expansions on the 3-sphere as well as a 3-hyperboloid, and then show that they give the same results for the beta functions. We find that the dimensionless coefficient of the Chern-Simons term, ν, has vanishing beta function. The flow of the cosmological constant and Newton’s constant depends on ν; we study analytically the structure of the flow and its fixed points in the limits of small and large ν.
References
S. Deser, R. Jackiw and S. Templeton, Topologically Massive Gauge Theories, Annals Phys. 140 (1982) 372 [Erratum ibid. 185 (1988) 406] [INSPIRE].
W. Li, W. Song and A. Strominger, Chiral Gravity in Three Dimensions, JHEP 04 (2008) 082 [arXiv:0801.4566] [INSPIRE].
S. Carlip, S. Deser, A. Waldron and D.K. Wise, Cosmological Topologically Massive Gravitons and Photons, Class. Quant. Grav. 26 (2009) 075008 [arXiv:0803.3998] [INSPIRE].
A. Strominger, A Simple Proof of the Chiral Gravity Conjecture, arXiv:0808.0506 [INSPIRE].
R. Percacci and E. Sezgin, One Loop β-functions in Topologically Massive Gravity, Class. Quant. Grav. 27 (2010) 155009 [arXiv:1002.2640] [INSPIRE].
M. Reuter, Nonperturbative evolution equation for quantum gravity, Phys. Rev. D 57 (1998) 971 [hep-th/9605030] [INSPIRE].
D. Dou and R. Percacci, The running gravitational couplings, Class. Quant. Grav. 15 (1998) 3449 [hep-th/9707239] [INSPIRE].
S. Weinberg, Ultraviolet divergences in quantum theories of gravitation, in General Relativity: An Einstein Centenary Survey, S.W. Hawking and W. Israel eds., Cambridge University Press, Cambridge, U.K. (1979), pp. 790-831.
M. Niedermaier and M. Reuter, The asymptotic safety scenario in quantum gravity, Living Rev. Relativity 9 (2006) 5.
R. Percacci, Asymptotic Safety, in D. Oriti ed., Approaches to Quantum Gravity: Towards a New Understanding of Space, Time and Matter, Cambridge University Press, Cambridge, U.K. (2009) [arXiv:0709.3851] [INSPIRE].
D.F. Litim, Fixed Points of Quantum Gravity and the Renormalisation Group, PoS (QG-Ph) 024 [arXiv:0810.3675] [INSPIRE].
A. Nink and M. Reuter, On the physical mechanism underlying Asymptotic Safety, JHEP 01 (2013) 062 [arXiv:1208.0031] [INSPIRE].
R. Floreanini and R. Percacci, The Heat kernel and the average effective potential, Phys. Lett. B 356 (1995) 205 [hep-th/9505172] [INSPIRE].
S.-B. Liao, On connection between momentum cutoff and the proper time regularizations, Phys. Rev. D 53 (1996) 2020 [hep-th/9501124] [INSPIRE].
A. Bonanno and M. Reuter, Proper time flow equation for gravity, JHEP 02 (2005) 035 [hep-th/0410191] [INSPIRE].
M. Roček and P. van Nieuwenhuizen, N ≥ 2 supersymmetric Chern-Simons terms as D = 3 extended conformal supergravity, Class. Quant. Grav. 3 (1986) 43 [INSPIRE].
S. Deser and J.H. Kay, Topologically massive supergravity, Phys. Lett. B 120 (1983) 97 [INSPIRE].
S. Deser, Cosmological topological supergravity, in S.M. Christensen ed., Quantum Theory Of Gravity, Adam Hilger, London, U.K. (1984) 374.
S.J. Gates, M.T. Grisaru, M. Roček and W. Siegel, Superspace Or One Thousand and One Lessons in Supersymmetry, hep-th/0108200 [INSPIRE].
T. Uematsu, Structure of N = 1 Conformal and Poincaré Supergravity in (1 + 1)-dimensions and (2 + 1)-dimensions, Z. Phys. C 29 (1985) 143 [INSPIRE].
U. Harst and M. Reuter, The ’Tetrad only’ theory space: Nonperturbative renormalization flow and Asymptotic Safety, JHEP 05 (2012) 005 [arXiv:1203.2158] [INSPIRE].
P. Dona and R. Percacci, Functional renormalization with fermions and tetrads, Phys. Rev. D 87 (2013) 045002 [arXiv:1209.3649] [INSPIRE].
S. Deger, A. Kaya, E. Sezgin and P. Sundell, Spectrum of D = 6, N = 4b supergravity on AdS 3 × S 3, Nucl. Phys. B 536 (1998) 110 [hep-th/9804166] [INSPIRE].
G.W. Gibbons, S.W. Hawking and M.J. Perry, Path Integrals and the Indefiniteness of the Gravitational Action, Nucl. Phys. B 138 (1978) 141 [INSPIRE].
E.S. Fradkin and A.A. Tseytlin, Renormalizable asymptotically free quantum theory of gravity, Nucl. Phys. B 201 (1982) 469 [INSPIRE].
Z. Bern, E. Mottola and S.K. Blau, General covariance of the path integral for quantum gravity, Phys. Rev. D 43 (1991) 1212 [INSPIRE].
M.R. Gaberdiel, D. Grumiller and D. Vassilevich, Graviton 1-loop partition function for 3-dimensional massive gravity, JHEP 11 (2010) 094 [arXiv:1007.5189] [INSPIRE].
N.K. Nielsen, Ghost Counting in Supergravity, Nucl. Phys. B 140 (1978) 499 [INSPIRE].
P. Van Nieuwenhuizen, Supergravity, Phys. Rept. 68 (1981) 189 [INSPIRE].
R.E. Kallosh, Modified Feynman Rules in Supergravity, Nucl. Phys. B 141 (1978) 141 [INSPIRE].
H.-b. Zhang and X. Zhang, One loop partition function from normal modes for \( \mathcal{N} \) = 1 supergravity in AdS 3, Class. Quant. Grav. 29 (2012) 145013 [arXiv:1205.3681] [INSPIRE].
S.M. Christensen, M.J. Duff, G.W. Gibbons and M. Roček, Vanishing One Loop β-function in Gauged N > 4 Supergravity, Phys. Rev. Lett. 45 (1980) 161 [INSPIRE].
I.N. McArthur, Super b 4 Coefficients in Supergravity, Class. Quant. Grav. 1 (1984) 245 [INSPIRE].
R. Percacci, On the Topological Mass in Three-dimensional Gravity, Annals Phys. 177 (1987) 27 [INSPIRE].
S. Deser and Z. Yang, Is topologically massive gravity renormalizable?, Class. Quant. Grav. 7 (1990) 1603 [INSPIRE].
B. Keszthelyi and G. Kleppe, Renormalizability of D = 3 topologically massive gravity, Phys. Lett. B 281 (1992) 33 [INSPIRE].
I. Oda, Renormalizability of Topologically Massive Gravity, arXiv:0905.1536 [INSPIRE].
N. Ohta, β-function and Asymptotic Safety in Three-dimensional Higher Derivative Gravity, Class. Quant. Grav. 29 (2012) 205012 [arXiv:1205.0476] [INSPIRE].
H. Afshar, B. Cvetkovic, S. Ertl, D. Grumiller and N. Johansson, Conformal Chern-Simons holography - lock, stock and barrel, Phys. Rev. D 85 (2012) 064033 [arXiv:1110.5644] [INSPIRE].
A. Bagchi, S. Detournay and D. Grumiller, Flat-Space Chiral Gravity, Phys. Rev. Lett. 109 (2012) 151301 [arXiv:1208.1658] [INSPIRE].
E.S. Fradkin and A.A. Tseytlin, One Loop Effective Potential in Gauged O(4) Supergravity, Nucl. Phys. B 234 (1984) 472 [INSPIRE].
L.N. Granda and S.D. Odintsov, Exact renormalization group for O(4) gauged supergravity, Phys. Lett. B 409 (1997) 206 [hep-th/9706062] [INSPIRE].
A.A. Bytsenko, S.D. Odintsov and S. Zerbini, The Effective action in gauged supergravity on hyperbolic background and induced cosmological constant, Phys. Lett. B 336 (1994) 355 [hep-th/9408095] [INSPIRE].
S. Weinberg, Critical Phenomena for Field Theorists, lectures presented at International School of Subnuclear Physics, Ettore Majorana Foundation, Erice, Sicily, 23July - 8 August 1976, published in Erice Subnuclear Physics (1976) 1.
M.M. Anber, J.F. Donoghue and M. El-Houssieny, Running couplings and operator mixing in the gravitational corrections to coupling constants, Phys. Rev. D 83 (2011) 124003 [arXiv:1011.3229] [INSPIRE].
M.M. Anber and J.F. Donoghue, On the running of the gravitational constant, Phys. Rev. D 85 (2012) 104016 [arXiv:1111.2875] [INSPIRE].
A. Codello, R. Percacci and C. Rahmede, Investigating the Ultraviolet Properties of Gravity with a Wilsonian Renormalization Group Equation, Annals Phys. 324 (2009) 414 [arXiv:0805.2909] [INSPIRE].
S.-I. Kojima, N. Sakai and Y. Tanii, Supergravity in (2 + epsilon)-dimensions, Int. J. Mod. Phys. A 9 (1994) 5415 [hep-th/9311045] [INSPIRE].
R. Camporesi and A. Higuchi, Spectral functions and zeta functions in hyperbolic spaces, J. Math. Phys. 35 (1994) 4217 [INSPIRE].
R. Camporesi and A. Higuchi, On the Eigen functions of the Dirac operator on spheres and real hyperbolic spaces, J. Geom. Phys. 20 (1996) 1 [gr-qc/9505009] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1302.0868
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Percacci, R., Perry, M.J., Pope, C.N. et al. Beta functions of topologically massive supergravity. J. High Energ. Phys. 2014, 83 (2014). https://doi.org/10.1007/JHEP03(2014)083
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP03(2014)083
Keywords
- Field Theories in Lower Dimensions
- Supergravity Models
- Renormalization Group