Black holes as bubble nucleation sites

Abstract

We consider the effect of inhomogeneities on the rate of false vacuum decay. Modelling the inhomogeneity by a black hole, we construct explicit Euclidean instantons which describe the nucleation of a bubble of true vacuum centred on the inhomogeneity. We find that inhomogeneity significantly enhances the nucleation rate over that of the Coleman-de Luccia instanton — the black hole acts as a nucleation site for the bubble. The effect is larger than previously believed due to the contributions to the action from conical singularities. For a sufficiently low initial mass, the original black hole is replaced by flat space during this process, as viewed by a single causal patch observer. Increasing the initial mass, we find a critical value above which a black hole remnant survives the process. This resulting black hole can have a higher mass than the original black hole, but always has a lower entropy. We compare the process to bubble-to-bubble transitions, where there is a semi-classical Lorentzian description in the WKB approximation.

References

  1. [1]

    S.R. Coleman, The Fate of the False Vacuum. 1. Semiclassical Theory, Phys. Rev. D 15 (1977) 2929 [Erratum ibid. D 16 (1977) 1248] [INSPIRE].

  2. [2]

    C.G. Callan Jr. and S.R. Coleman, The Fate of the False Vacuum. 2. First Quantum Corrections, Phys. Rev. D 16 (1977) 1762 [INSPIRE].

    ADS  Google Scholar 

  3. [3]

    A.H. Guth, The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems, Phys. Rev. D 23 (1981) 347 [INSPIRE].

    ADS  Google Scholar 

  4. [4]

    M.S. Turner and F. Wilczek, Might our vacuum be metastable?, Nature 298 (1982) 633 [INSPIRE].

    ADS  Article  Google Scholar 

  5. [5]

    W.A. Hiscock, Can black holes nucleate vacuum phase transitions?, Phys. Rev. D 35 (1987) 1161 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  6. [6]

    V.A. Berezin, V.A. Kuzmin and I.I. Tkachev, O(3) Invariant Tunneling in General Relativity, Phys. Lett. B 207 (1988) 397 [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  7. [7]

    V.A. Berezin, V.A. Kuzmin and I.I. Tkachev, Black holes initiate false vacuum decay, Phys. Rev. D 43 (1991) 3112 [INSPIRE].

    ADS  Google Scholar 

  8. [8]

    I.G. Moss, Black hole bubbles, Phys. Rev. D 32 (1985) 1333 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  9. [9]

    C. Cheung and S. Leichenauer, Limits on New Physics from Black Holes, arXiv:1309.0530 [INSPIRE].

  10. [10]

    S.R. Coleman and F. De Luccia, Gravitational Effects on and of Vacuum Decay, Phys. Rev. D 21 (1980) 3305 [INSPIRE].

    ADS  Google Scholar 

  11. [11]

    H. Nariai, On some static solutions of Einsteins gravitational field equations in a spherically symmetric case, Sci. Rept. Tohoku Univ. 34 (1950) 160.

    ADS  MathSciNet  Google Scholar 

  12. [12]

    H. Nariai, On a new cosmological solution of Einsteins field equations of gravitation, Sci. Rept. Tohoku Univ. 35 (1951) 46.

    MathSciNet  Google Scholar 

  13. [13]

    S.W. Hawking and N. Turok, Open inflation without false vacua, Phys. Lett. B 425 (1998) 25 [hep-th/9802030] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  14. [14]

    N. Turok and S.W. Hawking, Open inflation, the four form and the cosmological constant, Phys. Lett. B 432 (1998) 271 [hep-th/9803156] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  15. [15]

    G.W. Gibbons and S.W. Hawking, Classification of Gravitational Instanton Symmetries, Commun. Math. Phys. 66 (1979) 291 [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  16. [16]

    J. Garriga and A. Megevand, Decay of de Sitter vacua by thermal activation, Int. J. Theor. Phys. 43 (2004) 883 [hep-th/0404097] [INSPIRE].

    Article  MATH  Google Scholar 

  17. [17]

    E. Farhi, A.H. Guth and J. Guven, Is It Possible to Create a Universe in the Laboratory by Quantum Tunneling?, Nucl. Phys. B 339 (1990) 417 [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  18. [18]

    W. Fischler, D. Morgan and J. Polchinski, Quantum Nucleation of False Vacuum Bubbles, Phys. Rev. D 41 (1990) 2638 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  19. [19]

    W. Fischler, D. Morgan and J. Polchinski, Quantization of False Vacuum Bubbles: A Hamiltonian Treatment of Gravitational Tunneling, Phys. Rev. D 42 (1990) 4042 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  20. [20]

    A. Aguirre and M.C. Johnson, Dynamics and instability of false vacuum bubbles, Phys. Rev. D 72 (2005) 103525 [gr-qc/0508093] [INSPIRE].

    ADS  Google Scholar 

  21. [21]

    A. Aguirre and M.C. Johnson, Two tunnels to inflation, Phys. Rev. D 73 (2006) 123529 [gr-qc/0512034] [INSPIRE].

    ADS  Google Scholar 

  22. [22]

    W. Israel, Singular hypersurfaces and thin shells in general relativity, Nuovo Cimento Soc. Ital. Phys. B 44 (1966) 4349.

    Google Scholar 

  23. [23]

    P. Bowcock, C. Charmousis and R. Gregory, General brane cosmologies and their global space-time structure, Class. Quant. Grav. 17 (2000) 4745 [hep-th/0007177] [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  24. [24]

    F. Mellor and I. Moss, Black Holes and Quantum Wormholes, Phys. Lett. B 222 (1989) 361 [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  25. [25]

    F. Mellor and I. Moss, Black Holes and Gravitational Instantons, Class. Quant. Grav. 6 (1989) 1379 [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  26. [26]

    F. Dowker, J.P. Gauntlett, D.A. Kastor and J.H. Traschen, Pair creation of dilaton black holes, Phys. Rev. D 49 (1994) 2909 [hep-th/9309075] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  27. [27]

    A.R. Brown and E.J. Weinberg, Thermal derivation of the Coleman-De Luccia tunneling prescription, Phys. Rev. D 76 (2007) 064003 [arXiv:0706.1573] [INSPIRE].

    ADS  Google Scholar 

  28. [28]

    R.P. Geroch and J.H. Traschen, Strings and Other Distributional Sources in General Relativity, Phys. Rev. D 36 (1987) 1017 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  29. [29]

    S.W. Hawking and G.T. Horowitz, The Gravitational Hamiltonian, action, entropy and surface terms, Class. Quant. Grav. 13 (1996) 1487 [gr-qc/9501014] [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  30. [30]

    D.V. Fursaev and S.N. Solodukhin, On the description of the Riemannian geometry in the presence of conical defects, Phys. Rev. D 52 (1995) 2133 [hep-th/9501127] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  31. [31]

    D.N. Page, Particle Emission Rates from a Black Hole: Massless Particles from an Uncharged, Nonrotating Hole, Phys. Rev. D 13 (1976) 198 [INSPIRE].

    ADS  Google Scholar 

  32. [32]

    C. Charmousis and R. Gregory, Axisymmetric metrics in arbitrary dimensions, Class. Quant. Grav. 21 (2004) 527 [gr-qc/0306069] [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  33. [33]

    C. Charmousis, Dilaton space-times with a Liouville potential, Class. Quant. Grav. 19 (2002) 83 [hep-th/0107126] [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  34. [34]

    S. Chadburn and R. Gregory, Time dependent black holes and scalar hair, arXiv:1304.6287 [INSPIRE].

  35. [35]

    N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, The Hierarchy problem and new dimensions at a millimeter, Phys. Lett. B 429 (1998) 263 [hep-ph/9803315] [INSPIRE].

    ADS  Article  Google Scholar 

  36. [36]

    L. Randall and R. Sundrum, A Large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  37. [37]

    P. Kanti, Black holes in theories with large extra dimensions: A Review, Int. J. Mod. Phys. A 19 (2004) 4899 [hep-ph/0402168] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  38. [38]

    R. Gregory and A. Padilla, Brane world instantons, Class. Quant. Grav. 19 (2002) 279 [hep-th/0107108] [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  39. [39]

    R. Gregory, Braneworld black holes, Lect. Notes Phys. 769 (2009) 259 [arXiv:0804.2595] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  40. [40]

    P. Figueras and T. Wiseman, Gravity and large black holes in Randall-Sundrum II braneworlds, Phys. Rev. Lett. 107 (2011) 081101 [arXiv:1105.2558] [INSPIRE].

    ADS  Article  Google Scholar 

  41. [41]

    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  42. [42]

    V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  43. [43]

    A. Westphal, Lifetime of Stringy de Sitter Vacua, JHEP 01 (2008) 012 [arXiv:0705.1557] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  44. [44]

    S. de Alwis, R. Gupta, E. Hatefi and F. Quevedo, Stability, Tunneling and Flux Changing de Sitter Transitions in the Large Volume String Scenario, JHEP 11 (2013) 179 [arXiv:1308.1222] [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ian G. Moss.

Additional information

ArXiv ePrint: 1401.0017

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Gregory, R., Moss, I.G. & Withers, B. Black holes as bubble nucleation sites. J. High Energ. Phys. 2014, 81 (2014). https://doi.org/10.1007/JHEP03(2014)081

Download citation

Keywords

  • Cosmology of Theories beyond the SM
  • Black Holes
  • Solitons Monopoles and Instantons