Infinite tension limit of the pure spinor superstring

  • Nathan Berkovits
Open Access


Mason and Skinner recently constructed a chiral infinite tension limit of the Ramond-Neveu-Schwarz superstring which was shown to compute the Cachazo-He-Yuan formulae for tree-level d = 10 Yang-Mills amplitudes and the NS-NS sector of tree-level d = 10 supergravity amplitudes. In this letter, their chiral infinite tension limit is generalized to the pure spinor superstring which computes a d = 10 superspace version of the Cachazo-He-Yuan formulae for tree-level d = 10 super-Yang-Mills and supergravity amplitudes.


Superstrings and Heterotic Strings Scattering Amplitudes 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    C.R. Mafra, Towards field theory amplitudes from the cohomology of pure spinor superspace, JHEP 11 (2010) 096 [arXiv:1007.3639] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  2. [2]
    C.R. Mafra, O. Schlotterer, S. Stieberger and D. Tsimpis, A recursive method for SYM n-point tree amplitudes, Phys. Rev. D 83 (2011) 126012 [arXiv:1012.3981] [INSPIRE].ADSGoogle Scholar
  3. [3]
    C.R. Mafra, O. Schlotterer and S. Stieberger, Complete N-point superstring disk amplitude I. Pure spinor computation, Nucl. Phys. B 873 (2013) 419 [arXiv:1106.2645] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  4. [4]
    F. Cachazo, S. He and E.Y. Yuan, Scattering of massless particles in arbitrary dimension, arXiv:1307.2199 [INSPIRE].
  5. [5]
    L. Mason and D. Skinner, Ambitwistor strings and the scattering equations, arXiv:1311.2564 [INSPIRE].
  6. [6]
    N. Berkovits, Covariant quantization of the superparticle using pure spinors, JHEP 09 (2001) 016 [hep-th/0105050] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  7. [7]
    N. Berkovits, Ten-dimensional super-twistors and Super-Yang-Mills, JHEP 04 (2010) 067 [arXiv:0910.1684] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  8. [8]
    N. Berkovits, An alternative string theory in twistor space for N = 4 super Yang-Mills, Phys. Rev. Lett. 93 (2004) 011601 [hep-th/0402045] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  9. [9]
    L. Mason and D. Skinner, Heterotic twistor-string theory, Nucl. Phys. B 795 (2008) 105 [arXiv:0708.2276] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  10. [10]
    L. Dolan and P. Goddard, Tree and loop amplitudes in open twistor string theory, JHEP 06 (2007) 005 [hep-th/0703054] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  11. [11]
    N. Berkovits, Super Poincaré covariant quantization of the superstring, JHEP 04 (2000) 018 [hep-th/0001035] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.ICTP South American Institute for Fundamental Research, Instituto de Física Teórica, UNESP—Univ. Estadual PaulistaSão PauloBrasil

Personalised recommendations