Skip to main content

Measurement of charged jet suppression in Pb-Pb collisions at \( \sqrt{{{s_{\mathrm{NN}}}}} \) = 2.76 TeV

Abstract

A measurement of the transverse momentum spectra of jets in Pb-Pb collisions at \( \sqrt{{{s_{\mathrm{NN}}}}} \) = 2.76TeV is reported. Jets are reconstructed from charged particles using the anti-k T jet algorithm with jet resolution parameters R of 0.2 and 0.3 in pseudo-rapidity |η| < 0.5. The transverse momentum p T of charged particles is measured down to 0.15 GeV/c which gives access to the low p T fragments of the jet. Jets found in heavy-ion collisions are corrected event-by-event for average background density and on an inclusive basis (via unfolding) for residual background fluctuations and detector effects. A strong suppression of jet production in central events with respect to peripheral events is observed. The suppression is found to be similar to the suppression of charged hadrons, which suggests that substantial energy is radiated at angles larger than the jet resolution parameter R = 0.3 considered in the analysis. The fragmentation bias introduced by selecting jets with a high p T leading particle, which rejects jets with a soft fragmentation pattern, has a similar effect on the jet yield for central and peripheral events. The ratio of jet spectra with R = 0.2 and R = 0.3 is found to be similar in Pb-Pb and simulated PYTHIA pp events, indicating no strong broadening of the radial jet structure in the reconstructed jets with R < 0.3.

References

  1. F. Karsch and E. Laermann, Thermodynamics and in medium hadron properties from lattice QCD, hep-lat/0305025 [INSPIRE].

  2. A. Bazavov et al., The chiral and deconfinement aspects of the QCD transition, Phys. Rev. D 85 (2012) 054503 [arXiv:1111.1710] [INSPIRE].

    ADS  Google Scholar 

  3. M. Gyulassy and M. Plumer, Jet Quenching in Dense Matter, Phys. Lett. B 243 (1990) 432 [INSPIRE].

    ADS  Article  Google Scholar 

  4. R. Baier, Y.L. Dokshitzer, S. Peigne and D. Schiff, Induced gluon radiation in a QCD medium, Phys. Lett. B 345 (1995) 277 [hep-ph/9411409] [INSPIRE].

    ADS  Article  Google Scholar 

  5. PHENIX collaboration, K. Adcox et al., Suppression of hadrons with large transverse momentum in central Au+Au collisions at \( \sqrt{{{s_{NN }}}} \) = 130-GeV, Phys. Rev. Lett. 88 (2002) 022301 [nucl-ex/0109003] [INSPIRE].

    ADS  Article  Google Scholar 

  6. PHENIX collaboration, S.S. Adler et al., Suppressed π0 production at large transverse momentum in central Au+ Au collisions at \( \sqrt{{{s_{NN }}}} \) = 200 GeV, Phys. Rev. Lett. 91 (2003) 072301 [nucl-ex/0304022] [INSPIRE].

    ADS  Article  Google Scholar 

  7. STAR collaboration, J. Adams et al., Transverse momentum and collision energy dependence of high p T hadron suppression in Au+Au collisions at ultrarelativistic energies, Phys. Rev. Lett. 91 (2003) 172302 [nucl-ex/0305015] [INSPIRE].

    ADS  Article  Google Scholar 

  8. STAR collaboration, J. Adams et al., Evidence from d + Au measurements for final state suppression of high p T hadrons in Au+Au collisions at RHIC, Phys. Rev. Lett. 91 (2003) 072304 [nucl-ex/0306024] [INSPIRE].

    ADS  Article  Google Scholar 

  9. BRAHMS collaboration, I. Arsene et al., Transverse momentum spectra in Au+Au and d+Au collisions at \( \sqrt{s} \) = 200 GeV and the pseudorapidity dependence of high p T suppression, Phys. Rev. Lett. 91 (2003) 072305 [nucl-ex/0307003] [INSPIRE].

    ADS  Article  Google Scholar 

  10. PHOBOS collaboration, C. Roland et al., Charged hadron transverse momentum distributions in Au+Au collisions at \( \sqrt{s} \) = 200-GeV, Nucl. Phys. A 715 (2003) 745 [hep-ex/0212006] [INSPIRE].

    ADS  Google Scholar 

  11. ALICE collaboration, Suppression of Charged Particle Production at Large Transverse Momentum in Central Pb-Pb Collisions at \( \sqrt{{{s_{NN }}}} \) = 2.76 TeV, Phys. Lett. B 696 (2011) 30 [arXiv:1012.1004] [INSPIRE].

    ADS  Google Scholar 

  12. ALICE collaboration, Particle-yield modification in jet-like azimuthal di-hadron correlations in Pb-Pb collisions at \( \sqrt{{{s_{NN }}}} \) = 2.76 TeV, Phys. Rev. Lett. 108 (2012) 092301 [arXiv:1110.0121] [INSPIRE].

    ADS  Article  Google Scholar 

  13. ATLAS collaboration, Measurement of the charged particle spectra in PbPb collisions at \( \sqrt{{{s_{NN }}}} \) = 2.76 TeV with the ATLAS detector at the LHC, ATLAS-CONF-2012-120 (2012).

  14. CMS collaboration, Study of high-pT charged particle suppression in PbPb compared to pp collisions at \( \sqrt{{{s_{NN }}}} \) = 2.76 TeV, Eur. Phys. J. C 72 (2012) 1945 [arXiv:1202.2554] [INSPIRE].

    ADS  Google Scholar 

  15. ATLAS collaboration, Observation of a Centrality-Dependent Dijet Asymmetry in Lead-Lead Collisions at \( \sqrt{{{s_{NN }}}} \) = 2.77 TeV with the ATLAS Detector at the LHC, Phys. Rev. Lett. 105 (2010) 252303 [arXiv:1011.6182] [INSPIRE].

    ADS  Article  Google Scholar 

  16. CMS collaboration, Jet momentum dependence of jet quenching in PbPb collisions at \( \sqrt{{{s_{NN }}}} \) = 2.76 TeV, Phys. Lett. B 712 (2012) 176 [arXiv:1202.5022] [INSPIRE].

    ADS  Google Scholar 

  17. ATLAS collaboration, Measurement of the jet radius and transverse momentum dependence of inclusive jet suppression in lead-lead collisions at \( \sqrt{{{s_{NN }}}} \) = 2.76 TeV with the ATLAS detector, Phys. Lett. B 719 (2013) 220 [arXiv:1208.1967] [INSPIRE].

    ADS  Google Scholar 

  18. ALICE collaboration, K. Aamodt et al., The ALICE experiment at the CERN LHC, 2008 JINST 3 S08002.

  19. ALICE collaboration, Centrality determination of Pb-Pb collisions at \( \sqrt{{{s_{NN }}}} \) = 2.76 TeV with ALICE, Phys. Rev. C 88 (2013) 044909 [arXiv:1301.4361] [INSPIRE].

    ADS  Google Scholar 

  20. J. Alme et al., The ALICE TPC, a large 3-dimensional tracking device with fast readout for ultra-high multiplicity events, Nucl. Instrum. Meth. A 622 (2010) 316 [arXiv:1001.1950] [INSPIRE].

    ADS  Article  Google Scholar 

  21. ALICE collaboration, Alignment of the ALICE Inner Tracking System with cosmic-ray tracks, 2010 JINST 5 P03003 [arXiv:1001.0502] [INSPIRE].

  22. ALICE collaboration, Centrality Dependence of Charged Particle Production at Large Transverse Momentum in Pb-Pb Collisions at \( \sqrt{{{s_{NN }}}} \) = 2.76 TeV, Phys. Lett. B 720 (2013) 52 [arXiv:1208.2711] [INSPIRE].

    ADS  Google Scholar 

  23. M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].

    ADS  Article  Google Scholar 

  24. M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the k t jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [INSPIRE].

    ADS  Article  Google Scholar 

  25. M. Cacciari, G.P. Salam and G. Soyez, The Catchment Area of Jets, JHEP 04 (2008) 005 [arXiv:0802.1188] [INSPIRE].

    ADS  Article  Google Scholar 

  26. M. Cacciari and G.P. Salam, Pileup subtraction using jet areas, Phys. Lett. B 659 (2008) 119 [arXiv:0707.1378] [INSPIRE].

    ADS  Article  Google Scholar 

  27. M. Cacciari, J. Rojo, G.P. Salam and G. Soyez, Jet Reconstruction in Heavy Ion Collisions, Eur. Phys. J. C 71 (2011) 1539 [arXiv:1010.1759] [INSPIRE].

    ADS  Google Scholar 

  28. ALICE collaboration, Measurement of Event Background Fluctuations for Charged Particle Jet Reconstruction in Pb-Pb collisions at \( \sqrt{{{s_{NN }}}} \) = 2.76 TeV, JHEP 03 (2012) 053 [arXiv:1201.2423] [INSPIRE].

    ADS  Google Scholar 

  29. J.W. Monk and C. Oropeza-Barrera, The HBOM Method for Unfolding Detector Effects, Nucl. Instrum. Meth. A 701 (2013) 17 [arXiv:1111.4896] [INSPIRE].

    ADS  Article  Google Scholar 

  30. G.O.V. de Barros, B. Fenton-Olsen, P. Jacobs and M. Ploskon, Data-driven analysis methods for the measurement of reconstructed jets in heavyion collisions at RHIC and LHC, arXiv:1208.1518 [INSPIRE].

  31. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

    ADS  Article  Google Scholar 

  32. R. Brun et al., GEANT Detector Description and Simulation Tool, CERN program library long writeup w5013 ed., March 1994.

  33. X.-N. Wang and M. Gyulassy, HIJING: A Monte Carlo model for multiple jet production in p p, p A and A A collisions, Phys. Rev. D 44 (1991) 3501.

    ADS  Google Scholar 

  34. P.Z. Skands, Tuning Monte Carlo Generators: The Perugia Tunes, Phys. Rev. D 82 (2010) 074018 [arXiv:1005.3457] [INSPIRE].

    ADS  Google Scholar 

  35. ALICE collaboration, Measurement of the inclusive differential jet cross section in pp collisions at \( \sqrt{s} \) = 2.76 TeV, Phys. Lett. B 722 (2013) 262 [arXiv:1301.3475] [INSPIRE].

    ADS  Google Scholar 

  36. ALICE collaboration, M. Vajzer, Charged jet spectra in proton-proton collisions with the ALICE experiment at the LHC, arXiv:1311.0148 [INSPIRE].

  37. ALICE collaboration, Neutral pion and η meson production in proton-proton collisions at \( \sqrt{s} \) = 0.9TeV and \( \sqrt{s} \) = 7TeV, Phys. Lett. B 717 (2012) 162 [arXiv:1205.5724] [INSPIRE].

    ADS  Google Scholar 

  38. G. D’Agostini, A Multidimensional unfolding method based on Bayestheorem, Nucl. Instrum. Meth. A 362 (1995) 487 [INSPIRE].

    ADS  Article  Google Scholar 

  39. V. Blobel, An Unfolding method for high-energy physics experiments, hep-ex/0208022 [INSPIRE].

  40. M. SchMelling, The Method of reduced cross entropy: A General approach to unfold probability distributions, Nucl. Instrum. Meth. A 340 (1994) 400 [INSPIRE].

    ADS  Article  Google Scholar 

  41. V. Blobel, Unfolding methods in high-energy physics experiments, in proceedings of CERN School of Computing - CSC84, Aiguablava, Spain, 9-22 Seprtember 1984 DESY-84-118.

  42. G. D’Agostini, Bayesian inference in processing experimental data: Principles and basic applications, Rept. Prog. Phys. 66 (2003) 1383 [physics/0304102] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  43. A. Hocker and V. Kartvelishvili, SVD approach to data unfolding, Nucl. Instrum. Meth. A 372 (1996) 469 [hep-ph/9509307] [INSPIRE].

    ADS  Article  Google Scholar 

  44. T. Adye, Unfolding algorithms and tests using RooUnfold, arXiv:1105.1160 [INSPIRE].

  45. New Muon collaboration, P. Amaudruz et al., A Reevaluation of the nuclear structure function ratios for D, He, Li-6, C and Ca, Nucl. Phys. B 441 (1995) 3 [hep-ph/9503291] [INSPIRE].

    ADS  Article  Google Scholar 

  46. K.J. Eskola, H. Paukkunen and C.A. Salgado, EPS09: A New Generation of NLO and LO Nuclear Parton Distribution Functions, JHEP 04 (2009) 065 [arXiv:0902.4154] [INSPIRE].

    ADS  Article  Google Scholar 

  47. J.W. Cronin et al., Production of Hadrons with Large Transverse Momentum at 200-GeV, 300-GeV and 400-GeV, Phys. Rev. D 11 (1975) 3105 [INSPIRE].

    ADS  Google Scholar 

  48. I. Vitev, B.-W. Zhang and S. Wicks, The Theory and phenomenology of jets in nuclear collisions, Eur. Phys. J. C 62 (2009) 139 [arXiv:0810.3052] [INSPIRE].

    ADS  Article  Google Scholar 

  49. I. Vitev, S. Wicks and B.-W. Zhang, A Theory of jet shapes and cross sections: From hadrons to nuclei, JHEP 11 (2008) 093 [arXiv:0810.2807] [INSPIRE].

    ADS  Article  Google Scholar 

  50. C.A. Salgado and U.A. Wiedemann, Calculating quenching weights, Phys. Rev. D 68 (2003) 014008 [hep-ph/0302184] [INSPIRE].

    ADS  Google Scholar 

  51. I. Vitev, Large angle hadron correlations from medium-induced gluon radiation, Phys. Lett. B 630 (2005) 78 [hep-ph/0501255] [INSPIRE].

    ADS  Article  Google Scholar 

  52. N. Armesto, L. Cunqueiro and C.A. Salgado, Q-PYTHIA: A Medium-modified implementation of final state radiation, Eur. Phys. J. C 63 (2009) 679 [arXiv:0907.1014] [INSPIRE].

    ADS  Article  Google Scholar 

  53. L. Apolinario, N. Armesto and L. Cunqueiro, An analysis of the influence of background subtraction and quenching on jet observables in heavy-ion collisions, JHEP 02 (2013) 022 [arXiv:1211.1161] [INSPIRE].

    ADS  Article  Google Scholar 

  54. CMS collaboration, S. Chatrchyan et al., Observation and studies of jet quenching in PbPb collisions at nucleon-nucleon center-of-mass energy = 2.76 TeV, Phys. Rev. C 84 (2011) 024906 [arXiv:1102.1957] [INSPIRE].

    ADS  Google Scholar 

  55. T. Renk, A Comparison study of medium-modified QCD shower evolution scenarios, Phys. Rev. C 79 (2009) 054906 [arXiv:0901.2818] [INSPIRE].

    ADS  Google Scholar 

  56. T. Renk, YaJEM: a Monte Carlo code for in-medium shower evolution, Int. J. Mod. Phys. E 20 (2011) 1594 [arXiv:1009.3740] [INSPIRE].

    ADS  Article  Google Scholar 

  57. J. Casalderrey-Solana, J.G. Milhano and U.A. Wiedemann, Jet Quenching via Jet Collimation, J. Phys. G 38 (2011) 035006 [arXiv:1012.0745] [INSPIRE].

    ADS  Article  Google Scholar 

  58. T. Renk, On the sensitivity of the dijet asymmetry to the physics of jet quenching, Phys. Rev. C 85 (2012) 064908 [arXiv:1202.4579] [INSPIRE].

    ADS  Google Scholar 

  59. Y. Mehtar-Tani, C.A. Salgado and K. Tywoniuk, The Radiation pattern of a QCD antenna in a dense medium, JHEP 10 (2012) 197 [arXiv:1205.5739] [INSPIRE].

    ADS  Article  Google Scholar 

  60. Y. Mehtar-Tani, C.A. Salgado and K. Tywoniuk, Jets in QCD Media: From Color Coherence to Decoherence, Phys. Lett. B 707 (2012) 156 [arXiv:1102.4317] [INSPIRE].

    ADS  Article  Google Scholar 

  61. CMS collaboration, Measurement of jet fragmentation into charged particles in pp and PbPb collisions at \( \sqrt{{{s_{NN }}}} \) = 2.76 TeV, JHEP 10 (2012) 087 [arXiv:1205.5872] [INSPIRE].

    ADS  Google Scholar 

  62. CMS collaboration, Modification of jet shapes in PbPb collisions at \( \sqrt{{{s_{NN }}}} \) = 2.76 TeV, Phys. Lett. B 730 (2014) 243 [arXiv:1310.0878] [INSPIRE].

    ADS  Google Scholar 

  63. ATLAS collaboration, Measurement of inclusive jet charged particle fragmentation functions in Pb + Pb collisions at \( \sqrt{{{s_{NN }}}} \) = 2.76 TeV with the ATLAS detector, ATLAS-CONF-2012-115 [ATLAS-COM-CONF-2012-159] (2012).

  64. J. Casalderrey-Solana, J.G. Milhano and P.Q. Arias, Out of Medium Fragmentation from Long-Lived Jet Showers, Phys. Lett. B 710 (2012) 175 [arXiv:1111.0310] [INSPIRE].

    ADS  Article  Google Scholar 

  65. Y. Mehtar-Tani, J.G. Milhano and K. Tywoniuk, Jet physics in heavy-ion collisions, Int. J. Mod. Phys. A 28 (2013) 1340013 [arXiv:1302.2579] [INSPIRE].

    ADS  Article  Google Scholar 

  66. T. Renk, Biased Showers - a common conceptual Framework for the Interpretation of High P T Observables in Heavy-Ion Collisions, Phys. Rev. C 88 (2013) 054902 [arXiv:1212.0646] [INSPIRE].

    ADS  Google Scholar 

  67. K.C. Zapp, F. Krauss and U.A. Wiedemann, A perturbative framework for jet quenching, JHEP 03 (2013) 080 [arXiv:1212.1599] [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors