Skip to main content

Advertisement

SpringerLink
  • Journal of High Energy Physics
  • Journal Aims and Scope
  • Submit to this journal
Quantitative study of geometrical scaling in deep inelastic scattering at HERA
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

αs in the Deep-Inelastic Scattering Scheme

11 April 2022

A. V. Kotikov, V. G. Krivokhizhin & B. G. Shaikhatdenov

Analytic results for deep-inelastic scattering at NNLO QCD with the nested soft-collinear subtraction scheme

03 January 2020

Konstantin Asteriadis, Fabrizio Caola, … Raoul Röntsch

Unitarisation dependence of diffractive scattering in light of high-energy collider data

02 September 2021

Arno Vanthieghem, Atri Bhattacharya, … Jean-René Cudell

Non-perturbative structure of semi-inclusive deep-inelastic and Drell-Yan scattering at small transverse momentum

23 June 2020

Ignazio Scimemi & Alexey Vladimirov

First global next-to-leading order determination of diffractive parton distribution functions and their uncertainties within the xFitter framework

18 April 2018

Muhammad Goharipour, Hamzeh Khanpour & Vadim Guzey

Calculations for deep inelastic scattering using fast interpolation grid techniques at NNLO in QCD and the extraction of $$\alpha _{\mathrm {s}}$$ α s from HERA data

14 October 2019

D. Britzger, J. Currie, … M. R. Sutton

Impact of low-x resummation on QCD analysis of HERA data

03 August 2018

xFitter Developers’ team, Hamed Abdolmaleki, … Marco Bonvini

Unpolarized transverse momentum distributions from a global fit of Drell-Yan and semi-inclusive deep-inelastic scattering data

19 October 2022

The MAP Collaboration, Alessandro Bacchetta, … Andrea Signori

Mapping the kinematical regimes of semi-inclusive deep inelastic scattering

09 October 2019

M. Boglione, A. Dotson, … N. Sato

Download PDF
  • Open Access
  • Published: 15 March 2013

Quantitative study of geometrical scaling in deep inelastic scattering at HERA

  • Michal Praszalowicz1 &
  • Tomasz Stebel1 

Journal of High Energy Physics volume 2013, Article number: 90 (2013) Cite this article

  • 444 Accesses

  • 19 Citations

  • 1 Altmetric

  • Metrics details

Abstract

We propose a method to assess the quality of geometrical scaling in Deep Inelastic Scattering and apply it to the combined HERA data on γ * p cross-section. Using two different approaches based on Bjorken x binning and binning in γ * p scattering energy W, we show that geometrical scaling in variable τ ~ Q 2 x λ works well up to Bjorken x’s 0.1. The corresponding value of exponent λ is 0.32-0.34.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. A. Stasto, K.J. Golec-Biernat and J. Kwiecinski, Geometric scaling for the total γ∗ p cross-section in the low x region, Phys. Rev. Lett. 86 (2001) 596 [hep-ph/0007192] [INSPIRE].

    Article  ADS  Google Scholar 

  2. A.H. Mueller, Parton saturation: an overview, hep-ph/0111244 [INSPIRE].

  3. L. McLerran, Strongly interacting matter matter at very high energy density: 3 lectures in Zakopane, Acta Phys. Polon. B 41 (2010) 2799 [arXiv:1011.3203] [INSPIRE].

    Google Scholar 

  4. A. Freund, K. Rummukainen, H. Weigert and A. Schafer, Geometric scaling in inclusive eA reactions and nonlinear perturbative QCD, Phys. Rev. Lett. 90 (2003) 222002 [hep-ph/0210139] [INSPIRE].

    Article  ADS  Google Scholar 

  5. A. Freund, H. Weigert, A. Schafer and K. Rummukainen, Saturation from nonlinear pQCD at small x in e p and e A processes, Acta Phys. Polon. B 33 (2002) 3057 [INSPIRE].

    ADS  Google Scholar 

  6. N. Armesto, C.A. Salgado and U.A. Wiedemann, Relating high-energy lepton-hadron, proton-nucleus and nucleus-nucleus collisions through geometric scaling, Phys. Rev. Lett. 94 (2005) 022002 [hep-ph/0407018] [INSPIRE].

    Article  ADS  Google Scholar 

  7. C. Marquet and L. Schoeffel, Geometric scaling in diffractive deep inelastic scattering, Phys. Lett. B 639 (2006) 471 [hep-ph/0606079] [INSPIRE].

    ADS  Google Scholar 

  8. L. McLerran and M. Praszalowicz, Saturation and scaling of multiplicity, mean p T , p T distributions from 200 GeV < \( \sqrt{s7 } \) TeV, Acta Phys. Polon. B 41 (2010) 1917 [arXiv:1006.4293] [INSPIRE].

    Google Scholar 

  9. L. McLerran and M. Praszalowicz, Saturation and scaling of multiplicity, mean p T and p T distributions from 200 GeV < \( \sqrt{s} \) < 7 TeV — addendum, Acta Phys. Polon. B 42 (2011) 99 [arXiv:1011.3403] [INSPIRE].

    Article  Google Scholar 

  10. M. Praszalowicz, Improved geometrical scaling at the LHC, Phys. Rev. Lett. 106 (2011) 142002 [arXiv:1101.0585] [INSPIRE].

    Article  ADS  Google Scholar 

  11. M. Praszalowicz, Geometrical scaling in hadronic collisions, Acta Phys. Polon. B 42 (2011) 1557 [arXiv:1104.1777] [INSPIRE].

    Article  Google Scholar 

  12. M. Praszalowicz, New look at geometrical scaling, arXiv:1112.0997 [INSPIRE].

  13. M. Praszalowicz, Geometrical scaling in high energy hadronic collisions, arXiv:1205.4538 [INSPIRE].

  14. L. Gribov, E. Levin and M. Ryskin, Semihard processes in QCD, Phys. Rept. 100 (1983) 1 [INSPIRE].

    Article  ADS  Google Scholar 

  15. A.H. Mueller and J.-W. Qiu, Gluon recombination and shadowing at small values of x, Nucl. Phys. B 268 (1986) 427 [INSPIRE].

    Article  ADS  Google Scholar 

  16. L.D. McLerran and R. Venugopalan, Computing quark and gluon distribution functions for very large nuclei, Phys. Rev. D 49 (1994) 2233 [hep-ph/9309289] [INSPIRE].

    ADS  Google Scholar 

  17. L.D. McLerran and R. Venugopalan, Gluon distribution functions for very large nuclei at small transverse momentum, Phys. Rev. D 49 (1994) 3352 [hep-ph/9311205] [INSPIRE].

    ADS  Google Scholar 

  18. L.D. McLerran and R. Venugopalan, Green’s functions in the color field of a large nucleus, Phys. Rev. D 50 (1994) 2225 [hep-ph/9402335] [INSPIRE].

    ADS  Google Scholar 

  19. A. Ayala, J. Jalilian-Marian, L.D. McLerran and R. Venugopalan, Quantum corrections to the Weizsacker-Williams gluon distribution function at small x, Phys. Rev. D 53 (1996) 458 [hep-ph/9508302] [INSPIRE].

    ADS  Google Scholar 

  20. J. Kwiecinski and A. Stasto, Geometric scaling and QCD evolution, Phys. Rev. D 66 (2002) 014013 [hep-ph/0203030] [INSPIRE].

    ADS  Google Scholar 

  21. J. Kwiecinski and A. Stasto, Large geometric scaling and QCD evolution, Acta Phys. Polon. B 33 (2002) 3439 [INSPIRE].

    ADS  Google Scholar 

  22. E. Iancu, K. Itakura and L. McLerran, Geometric scaling above the saturation scale, Nucl. Phys. A 708 (2002) 327 [hep-ph/0203137] [INSPIRE].

    ADS  Google Scholar 

  23. F. Caola and S. Forte, Geometric scaling from GLAP evolution, Phys. Rev. Lett. 101 (2008) 022001 [arXiv:0802.1878] [INSPIRE].

    Article  ADS  Google Scholar 

  24. K.J. Golec-Biernat and M. Wusthoff, Saturation effects in deep inelastic scattering at low Q 2 and its implications on diffraction, Phys. Rev. D 59 (1998) 014017 [hep-ph/9807513] [INSPIRE].

    ADS  Google Scholar 

  25. K.J. Golec-Biernat and M. Wusthoff, Saturation in diffractive deep inelastic scattering, Phys. Rev. D 60 (1999) 114023 [hep-ph/9903358] [INSPIRE].

    ADS  Google Scholar 

  26. F. Gelis, R.B. Peschanski, G. Soyez and L. Schoeffel, Systematics of geometric scaling, Phys. Lett. B 647 (2007) 376 [hep-ph/0610435] [INSPIRE].

    ADS  Google Scholar 

  27. G. Beuf, R. Peschanski, C. Royon and D. Salek, Systematic analysis of scaling properties in deep inelastic scattering, Phys. Rev. D 78 (2008) 074004 [arXiv:0803.2186] [INSPIRE].

    ADS  Google Scholar 

  28. G. Beuf, C. Royon and D. Salek, Geometric scaling of F 2 and \( F_2^c \) in data and QCD parametrisations, arXiv:0810.5082 [INSPIRE].

  29. C. Royon and R. Peschanski, Studies of scaling properties in deep inelastic scattering, PoS(DIS 2010) 282 [arXiv:1008.0261] [INSPIRE].

  30. H1 and ZEUS collaboration, F. Aaron et al., Combined measurement and QCD analysis of the inclusive e ± p scattering cross sections at HERA, JHEP 01 (2010) 109 [arXiv:0911.0884] [INSPIRE].

    Article  ADS  Google Scholar 

  31. T. Stebel, Quantitative analysis of geometrical scaling in deep inelastic scattering, arXiv:1210.1567 [INSPIRE].

  32. H1 collaboration, C. Adloff et al., Deep inelastic inclusive ep scattering at low x and a determination of α s , Eur. Phys. J. C 21 (2001) 33 [hep-ex/0012053] [INSPIRE].

    Article  ADS  Google Scholar 

  33. ZEUS collaboration, S. Chekanov et al., Measurement of the neutral current cross-section and F 2 structure function for deep inelastic e + p scattering at HERA, Eur. Phys. J. C 21 (2001) 443 [hep-ex/0105090] [INSPIRE].

    ADS  Google Scholar 

  34. J. Bartels, K.J. Golec-Biernat and H. Kowalski, A modification of the saturation model: DGLAP evolution, Phys. Rev. D 66 (2002) 014001 [hep-ph/0203258] [INSPIRE].

    ADS  Google Scholar 

  35. H. Kowalski, L. Lipatov, D. Ross and G. Watt, Using HERA data to determine the infrared behaviour of the BFKL amplitude, Eur. Phys. J. C 70 (2010) 983 [arXiv:1005.0355] [INSPIRE].

    Article  ADS  Google Scholar 

  36. F. Caola, S. Forte and J. Rojo, HERA data and DGLAP evolution: theory and phenomenology, Nucl. Phys. A 854 (2011) 32 [arXiv:1007.5405] [INSPIRE].

    ADS  Google Scholar 

  37. European Muon collaboration, J. Aubert et al., A detailed study of the proton structure functions in deep inelastic muon-proton scattering, Nucl. Phys. B 259 (1985) 189 [INSPIRE].

    Article  ADS  Google Scholar 

  38. BCDMS collaboration, A. Benvenuti et al., A high statistics measurement of the proton structure functions F 2 (x, Q 2) and R from deep inelastic muon scattering at high Q 2, Phys. Lett. B 223 (1989) 485 [INSPIRE].

    ADS  Google Scholar 

  39. New Muon collaboration, M. Arneodo et al., Measurement of the proton and deuteron structure functions, \( F_2^{(p) } \) and \( F_2^{(d) } \) and of the ratio σ L /σ T , Nucl. Phys. B 483 (1997) 3 [hep-ph/9610231] [INSPIRE].

    ADS  Google Scholar 

  40. E665 collaboration, M. Adams et al., Proton and deuteron structure functions in muon scattering at 470 GeV, Phys. Rev. D 54 (1996) 3006 [INSPIRE].

    ADS  Google Scholar 

  41. L. Whitlow, E. Riordan, S. Dasu, S. Rock and A. Bodek, Precise measurements of the proton and deuteron structure functions from a global analysis of the SLAC deep inelastic electron scattering cross-sections, Phys. Lett. B 282 (1992) 475 [INSPIRE].

    ADS  Google Scholar 

  42. E. Avsar and G. Gustafson, Geometric scaling and QCD dynamics in DIS, JHEP 04 (2007) 067 [hep-ph/0702087] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. M. Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059, Kraków, Poland

    Michal Praszalowicz & Tomasz Stebel

Authors
  1. Michal Praszalowicz
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Tomasz Stebel
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Michal Praszalowicz.

Additional information

ArXiv ePrint: 1211.5305

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Praszalowicz, M., Stebel, T. Quantitative study of geometrical scaling in deep inelastic scattering at HERA. J. High Energ. Phys. 2013, 90 (2013). https://doi.org/10.1007/JHEP03(2013)090

Download citation

  • Received: 02 December 2012

  • Revised: 03 February 2013

  • Accepted: 11 February 2013

  • Published: 15 March 2013

  • DOI: https://doi.org/10.1007/JHEP03(2013)090

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Deep Inelastic Scattering (Phenomenology)
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.