Abstract
We propose a method to assess the quality of geometrical scaling in Deep Inelastic Scattering and apply it to the combined HERA data on γ * p cross-section. Using two different approaches based on Bjorken x binning and binning in γ * p scattering energy W, we show that geometrical scaling in variable τ ~ Q 2 x λ works well up to Bjorken x’s 0.1. The corresponding value of exponent λ is 0.32-0.34.
References
A. Stasto, K.J. Golec-Biernat and J. Kwiecinski, Geometric scaling for the total γ∗ p cross-section in the low x region, Phys. Rev. Lett. 86 (2001) 596 [hep-ph/0007192] [INSPIRE].
A.H. Mueller, Parton saturation: an overview, hep-ph/0111244 [INSPIRE].
L. McLerran, Strongly interacting matter matter at very high energy density: 3 lectures in Zakopane, Acta Phys. Polon. B 41 (2010) 2799 [arXiv:1011.3203] [INSPIRE].
A. Freund, K. Rummukainen, H. Weigert and A. Schafer, Geometric scaling in inclusive eA reactions and nonlinear perturbative QCD, Phys. Rev. Lett. 90 (2003) 222002 [hep-ph/0210139] [INSPIRE].
A. Freund, H. Weigert, A. Schafer and K. Rummukainen, Saturation from nonlinear pQCD at small x in e p and e A processes, Acta Phys. Polon. B 33 (2002) 3057 [INSPIRE].
N. Armesto, C.A. Salgado and U.A. Wiedemann, Relating high-energy lepton-hadron, proton-nucleus and nucleus-nucleus collisions through geometric scaling, Phys. Rev. Lett. 94 (2005) 022002 [hep-ph/0407018] [INSPIRE].
C. Marquet and L. Schoeffel, Geometric scaling in diffractive deep inelastic scattering, Phys. Lett. B 639 (2006) 471 [hep-ph/0606079] [INSPIRE].
L. McLerran and M. Praszalowicz, Saturation and scaling of multiplicity, mean p T , p T distributions from 200 GeV < \( \sqrt{s7 } \) TeV, Acta Phys. Polon. B 41 (2010) 1917 [arXiv:1006.4293] [INSPIRE].
L. McLerran and M. Praszalowicz, Saturation and scaling of multiplicity, mean p T and p T distributions from 200 GeV < \( \sqrt{s} \) < 7 TeV — addendum, Acta Phys. Polon. B 42 (2011) 99 [arXiv:1011.3403] [INSPIRE].
M. Praszalowicz, Improved geometrical scaling at the LHC, Phys. Rev. Lett. 106 (2011) 142002 [arXiv:1101.0585] [INSPIRE].
M. Praszalowicz, Geometrical scaling in hadronic collisions, Acta Phys. Polon. B 42 (2011) 1557 [arXiv:1104.1777] [INSPIRE].
M. Praszalowicz, New look at geometrical scaling, arXiv:1112.0997 [INSPIRE].
M. Praszalowicz, Geometrical scaling in high energy hadronic collisions, arXiv:1205.4538 [INSPIRE].
L. Gribov, E. Levin and M. Ryskin, Semihard processes in QCD, Phys. Rept. 100 (1983) 1 [INSPIRE].
A.H. Mueller and J.-W. Qiu, Gluon recombination and shadowing at small values of x, Nucl. Phys. B 268 (1986) 427 [INSPIRE].
L.D. McLerran and R. Venugopalan, Computing quark and gluon distribution functions for very large nuclei, Phys. Rev. D 49 (1994) 2233 [hep-ph/9309289] [INSPIRE].
L.D. McLerran and R. Venugopalan, Gluon distribution functions for very large nuclei at small transverse momentum, Phys. Rev. D 49 (1994) 3352 [hep-ph/9311205] [INSPIRE].
L.D. McLerran and R. Venugopalan, Green’s functions in the color field of a large nucleus, Phys. Rev. D 50 (1994) 2225 [hep-ph/9402335] [INSPIRE].
A. Ayala, J. Jalilian-Marian, L.D. McLerran and R. Venugopalan, Quantum corrections to the Weizsacker-Williams gluon distribution function at small x, Phys. Rev. D 53 (1996) 458 [hep-ph/9508302] [INSPIRE].
J. Kwiecinski and A. Stasto, Geometric scaling and QCD evolution, Phys. Rev. D 66 (2002) 014013 [hep-ph/0203030] [INSPIRE].
J. Kwiecinski and A. Stasto, Large geometric scaling and QCD evolution, Acta Phys. Polon. B 33 (2002) 3439 [INSPIRE].
E. Iancu, K. Itakura and L. McLerran, Geometric scaling above the saturation scale, Nucl. Phys. A 708 (2002) 327 [hep-ph/0203137] [INSPIRE].
F. Caola and S. Forte, Geometric scaling from GLAP evolution, Phys. Rev. Lett. 101 (2008) 022001 [arXiv:0802.1878] [INSPIRE].
K.J. Golec-Biernat and M. Wusthoff, Saturation effects in deep inelastic scattering at low Q 2 and its implications on diffraction, Phys. Rev. D 59 (1998) 014017 [hep-ph/9807513] [INSPIRE].
K.J. Golec-Biernat and M. Wusthoff, Saturation in diffractive deep inelastic scattering, Phys. Rev. D 60 (1999) 114023 [hep-ph/9903358] [INSPIRE].
F. Gelis, R.B. Peschanski, G. Soyez and L. Schoeffel, Systematics of geometric scaling, Phys. Lett. B 647 (2007) 376 [hep-ph/0610435] [INSPIRE].
G. Beuf, R. Peschanski, C. Royon and D. Salek, Systematic analysis of scaling properties in deep inelastic scattering, Phys. Rev. D 78 (2008) 074004 [arXiv:0803.2186] [INSPIRE].
G. Beuf, C. Royon and D. Salek, Geometric scaling of F 2 and \( F_2^c \) in data and QCD parametrisations, arXiv:0810.5082 [INSPIRE].
C. Royon and R. Peschanski, Studies of scaling properties in deep inelastic scattering, PoS(DIS 2010) 282 [arXiv:1008.0261] [INSPIRE].
H1 and ZEUS collaboration, F. Aaron et al., Combined measurement and QCD analysis of the inclusive e ± p scattering cross sections at HERA, JHEP 01 (2010) 109 [arXiv:0911.0884] [INSPIRE].
T. Stebel, Quantitative analysis of geometrical scaling in deep inelastic scattering, arXiv:1210.1567 [INSPIRE].
H1 collaboration, C. Adloff et al., Deep inelastic inclusive ep scattering at low x and a determination of α s , Eur. Phys. J. C 21 (2001) 33 [hep-ex/0012053] [INSPIRE].
ZEUS collaboration, S. Chekanov et al., Measurement of the neutral current cross-section and F 2 structure function for deep inelastic e + p scattering at HERA, Eur. Phys. J. C 21 (2001) 443 [hep-ex/0105090] [INSPIRE].
J. Bartels, K.J. Golec-Biernat and H. Kowalski, A modification of the saturation model: DGLAP evolution, Phys. Rev. D 66 (2002) 014001 [hep-ph/0203258] [INSPIRE].
H. Kowalski, L. Lipatov, D. Ross and G. Watt, Using HERA data to determine the infrared behaviour of the BFKL amplitude, Eur. Phys. J. C 70 (2010) 983 [arXiv:1005.0355] [INSPIRE].
F. Caola, S. Forte and J. Rojo, HERA data and DGLAP evolution: theory and phenomenology, Nucl. Phys. A 854 (2011) 32 [arXiv:1007.5405] [INSPIRE].
European Muon collaboration, J. Aubert et al., A detailed study of the proton structure functions in deep inelastic muon-proton scattering, Nucl. Phys. B 259 (1985) 189 [INSPIRE].
BCDMS collaboration, A. Benvenuti et al., A high statistics measurement of the proton structure functions F 2 (x, Q 2) and R from deep inelastic muon scattering at high Q 2, Phys. Lett. B 223 (1989) 485 [INSPIRE].
New Muon collaboration, M. Arneodo et al., Measurement of the proton and deuteron structure functions, \( F_2^{(p) } \) and \( F_2^{(d) } \) and of the ratio σ L /σ T , Nucl. Phys. B 483 (1997) 3 [hep-ph/9610231] [INSPIRE].
E665 collaboration, M. Adams et al., Proton and deuteron structure functions in muon scattering at 470 GeV, Phys. Rev. D 54 (1996) 3006 [INSPIRE].
L. Whitlow, E. Riordan, S. Dasu, S. Rock and A. Bodek, Precise measurements of the proton and deuteron structure functions from a global analysis of the SLAC deep inelastic electron scattering cross-sections, Phys. Lett. B 282 (1992) 475 [INSPIRE].
E. Avsar and G. Gustafson, Geometric scaling and QCD dynamics in DIS, JHEP 04 (2007) 067 [hep-ph/0702087] [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1211.5305
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Praszalowicz, M., Stebel, T. Quantitative study of geometrical scaling in deep inelastic scattering at HERA. J. High Energ. Phys. 2013, 90 (2013). https://doi.org/10.1007/JHEP03(2013)090
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP03(2013)090
Keywords
- Deep Inelastic Scattering (Phenomenology)