Skip to main content

Advertisement

SpringerLink
  • Journal of High Energy Physics
  • Journal Aims and Scope
  • Submit to this journal
A note on “symmetric” vielbeins in bimetric, massive, perturbative and non perturbative gravities
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

What do gravitons say about (unimodular) gravity?

17 December 2018

Mario Herrero-Valea

All higher-curvature gravities as Generalized quasi-topological gravities

11 November 2019

Pablo Bueno, Pablo A. Cano, … Ángel Murcia

A remarkably simple theory of 3d massive gravity

12 April 2019

Marc Geiller & Karim Noui

GJMS-like operators on symmetric 2-tensors and their gravitational duals

01 February 2023

R. Aros, F. Bugini & D. E. Diaz

Einstein-Cartan gravity, matter, and scale-invariant generalization

27 October 2020

M. Shaposhnikov, A. Shkerin, … S. Zell

Quasi-topological gravities on general spherically symmetric metric

08 March 2023

Feiyu Chen

Universal structure of covariant holographic two-point functions in massless higher-order gravities

09 October 2018

Yue-Zhou Li, H. Lü & Zhan-Feng Mai

Three-dimensional (higher-spin) gravities with extended Schrödinger and l-conformal Galilean symmetries

26 July 2019

Dmitry Chernyavsky & Dmitri Sorokin

Comparing equivalent gravities: common features and differences

03 October 2022

Salvatore Capozziello, Vittorio De Falco & Carmen Ferrara

Download PDF
  • Open Access
  • Published: 14 March 2013

A note on “symmetric” vielbeins in bimetric, massive, perturbative and non perturbative gravities

  • C. Deffayet1,
  • J. Mourad1 &
  • G. Zahariade1 

Journal of High Energy Physics volume 2013, Article number: 86 (2013) Cite this article

  • 460 Accesses

  • 92 Citations

  • Metrics details

Abstract

We consider a manifold endowed with two different vielbeins \({E^A}_{\mu }\) and \({L^A}_{\mu }\) corresponding to two different metrics \({g_{{\mu \nu }}}\) and f μν . Such a situation arises generically in bimetric or massive gravity (including the recently discussed version of de Rham, Gabadadze and Tolley), as well as in perturbative quantum gravity where one vielbein parametrizes the background space-time and the other the dynamical degrees of freedom. We determine the conditions under which the relation \({g^{{\mu \nu }}}{E^A}_{\mu }{L^B}_{\nu }={g^{{\mu \nu }}}{E^B}_{\mu }{L^A}_{\nu }\) can be imposed (or the “Deser-van Nieuwenhuizen” gauge chosen). We clarify and correct various statements which have been made about this issue. We show in particular that in D = 4 dimensions, this condition is always equivalent to the existence of a real matrix square root of \({g^{-1 }}\) f.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. F.J. Belinfante and J.C. Swihart, Phenomenological linear theory of gravitation. I. Classical mechanics, Ann. Phys. 1 (1957) 168.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. F.J. Belinfante and J.C. Swihart, Phenomenological linear theory of gravitation. II. Interaction with the Maxwell field, Ann. Phys. 1 (1957) 196.

    Article  MathSciNet  ADS  Google Scholar 

  3. F.J. Belinfante and J.C. Swihart, Phenomenological linear theory of gravitation. III. Interaction with the spinning electron, Ann. Phys. 2 (1957) 81.

    Article  MathSciNet  ADS  Google Scholar 

  4. A.P. Lightman and D.L. Lee, New two-metric theory of gravity with prior geometry, Phys. Rev. D 8 (1973) 3293.

    ADS  Google Scholar 

  5. C. Isham, A. Salam and J. Strathdee, F-dominance of gravity, Phys. Rev. D 3 (1971) 867 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  6. N. Rosen, A bi-metric theory of gravitation, Rel. Grav. 4 (1973) 435.

    Article  ADS  Google Scholar 

  7. N. Wei-Tou, A new theory of gravity, Phys. Rev. D 7 (1973) 2880 [INSPIRE].

    ADS  Google Scholar 

  8. P. Rastall, A theory of gravity, Can. J. Phys. 54 (1976) 66.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. T. Damour and I.I. Kogan, Effective lagrangians and universality classes of nonlinear bigravity, Phys. Rev. D 66 (2002) 104024 [hep-th/0206042] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  10. V. Rubakov and P. Tinyakov, Infrared-modified gravities and massive gravitons, Phys. Usp. 51 (2008) 759 [arXiv:0802.4379] [INSPIRE].

    Article  ADS  Google Scholar 

  11. K. Hinterbichler, Theoretical aspects of massive gravity, Rev. Mod. Phys. 84 (2012) 671 [arXiv:1105.3735] [INSPIRE].

    Article  ADS  Google Scholar 

  12. C. de Rham, G. Gabadadze and A.J. Tolley, Resummation of massive gravity, Phys. Rev. Lett. 106 (2011) 231101 [arXiv:1011.1232] [INSPIRE].

    Article  ADS  Google Scholar 

  13. C. de Rham and G. Gabadadze, Generalization of the Fierz-Pauli action, Phys. Rev. D 82 (2010) 044020 [arXiv:1007.0443] [INSPIRE].

    ADS  Google Scholar 

  14. C. de Rham, G. Gabadadze and A.J. Tolley, Ghost free massive gravity in the Stückelberg language, Phys. Lett. B 711 (2012) 190 [arXiv:1107.3820] [INSPIRE].

    ADS  Google Scholar 

  15. S.F. Hassan, R.A. Rosen and A. Schmidt-May, Ghost-free massive gravity with a general reference metric, JHEP 02 (2012) 026 [arXiv:1109.3230] [INSPIRE].

    Article  ADS  Google Scholar 

  16. S.F. Hassan and R.A. Rosen, Bimetric gravity from ghost-free massive gravity, JHEP 02 (2012) 126 [arXiv:1109.3515] [INSPIRE].

    Article  ADS  Google Scholar 

  17. S. Deser and P. van Nieuwenhuizen, Nonrenormalizability of the quantized Dirac-Einstein system, Phys. Rev. D 10 (1974) 411 [INSPIRE].

    ADS  Google Scholar 

  18. R.P. Woodard, The vierbein is irrelevant in perturbation theory, Phys. Lett. B 148 (1984) 440 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  19. J. Hoek, On the Deser-van Nieuwenhuizen algebraic vierbein gauge, Lett. Math. Phys. 6 (1982) 49 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. A.H. Chamseddine and V. Mukhanov, Massive gravity simplified: a quadratic action, JHEP 08 (2011) 091 [arXiv:1106.5868] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. M.S. Volkov, Hairy black holes in the ghost-free bigravity theory, Phys. Rev. D 85 (2012) 124043 [arXiv:1202.6682] [INSPIRE].

    ADS  Google Scholar 

  22. K. Hinterbichler and R.A. Rosen, Interacting spin-2 fields, JHEP 07 (2012) 047 [arXiv:1203.5783] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. C. Deffayet, J. Mourad and G. Zahariade, Covariant constraints in ghost free massive gravity, JCAP 01 (2013) 032 [arXiv:1207.6338] [INSPIRE].

    Article  ADS  Google Scholar 

  24. N.J. Higham, Computing real square roots of a real matrix, Linerar Algebra Appl. 88 (1987) 405.

    Article  MathSciNet  Google Scholar 

  25. J. Gallier, Logarithms and square roots of real matrices, arXiv:0805.0245.

  26. E.A. Bergshoeff, O. Hohm and P.K. Townsend, Massive gravity in three dimensions, Phys. Rev. Lett. 102 (2009) 201301 [arXiv:0901.1766] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. E.A. Bergshoeff, O. Hohm and P.K. Townsend, More on massive 3D gravity, Phys. Rev. D 79 (2009) 124042 [arXiv:0905.1259] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  28. C. de Rham, G. Gabadadze, D. Pirtskhalava, A.J. Tolley and I. Yavin, Nonlinear dynamics of 3D massive gravity, JHEP 06 (2011) 028 [arXiv:1103.1351] [INSPIRE].

    Article  Google Scholar 

  29. F. Uhlig, A recurring theorem about pairs of quadratic forms and extensions: a survey, Linear Algebra Appl. 25 (1979) 219.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. APC, 10 rue Alice Domon et Léonie Duquet, 75205, Paris Cedex 13, France

    C. Deffayet, J. Mourad & G. Zahariade

Authors
  1. C. Deffayet
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. J. Mourad
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. G. Zahariade
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to G. Zahariade.

Additional information

UMR 7164 (CNRS, Université Paris 7, CEA, Observatoire de Paris).

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Deffayet, C., Mourad, J. & Zahariade, G. A note on “symmetric” vielbeins in bimetric, massive, perturbative and non perturbative gravities. J. High Energ. Phys. 2013, 86 (2013). https://doi.org/10.1007/JHEP03(2013)086

Download citation

  • Received: 02 September 2012

  • Revised: 16 January 2013

  • Accepted: 31 January 2013

  • Published: 14 March 2013

  • DOI: https://doi.org/10.1007/JHEP03(2013)086

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Classical Theories of Gravity
  • Gauge Symmetry
  • Space-Time Symmetries
  • Models of Quantum Gravity
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.