Abstract
We consider a manifold endowed with two different vielbeins \({E^A}_{\mu }\) and \({L^A}_{\mu }\) corresponding to two different metrics \({g_{{\mu \nu }}}\) and f μν . Such a situation arises generically in bimetric or massive gravity (including the recently discussed version of de Rham, Gabadadze and Tolley), as well as in perturbative quantum gravity where one vielbein parametrizes the background space-time and the other the dynamical degrees of freedom. We determine the conditions under which the relation \({g^{{\mu \nu }}}{E^A}_{\mu }{L^B}_{\nu }={g^{{\mu \nu }}}{E^B}_{\mu }{L^A}_{\nu }\) can be imposed (or the “Deser-van Nieuwenhuizen” gauge chosen). We clarify and correct various statements which have been made about this issue. We show in particular that in D = 4 dimensions, this condition is always equivalent to the existence of a real matrix square root of \({g^{-1 }}\) f.
References
F.J. Belinfante and J.C. Swihart, Phenomenological linear theory of gravitation. I. Classical mechanics, Ann. Phys. 1 (1957) 168.
F.J. Belinfante and J.C. Swihart, Phenomenological linear theory of gravitation. II. Interaction with the Maxwell field, Ann. Phys. 1 (1957) 196.
F.J. Belinfante and J.C. Swihart, Phenomenological linear theory of gravitation. III. Interaction with the spinning electron, Ann. Phys. 2 (1957) 81.
A.P. Lightman and D.L. Lee, New two-metric theory of gravity with prior geometry, Phys. Rev. D 8 (1973) 3293.
C. Isham, A. Salam and J. Strathdee, F-dominance of gravity, Phys. Rev. D 3 (1971) 867 [INSPIRE].
N. Rosen, A bi-metric theory of gravitation, Rel. Grav. 4 (1973) 435.
N. Wei-Tou, A new theory of gravity, Phys. Rev. D 7 (1973) 2880 [INSPIRE].
P. Rastall, A theory of gravity, Can. J. Phys. 54 (1976) 66.
T. Damour and I.I. Kogan, Effective lagrangians and universality classes of nonlinear bigravity, Phys. Rev. D 66 (2002) 104024 [hep-th/0206042] [INSPIRE].
V. Rubakov and P. Tinyakov, Infrared-modified gravities and massive gravitons, Phys. Usp. 51 (2008) 759 [arXiv:0802.4379] [INSPIRE].
K. Hinterbichler, Theoretical aspects of massive gravity, Rev. Mod. Phys. 84 (2012) 671 [arXiv:1105.3735] [INSPIRE].
C. de Rham, G. Gabadadze and A.J. Tolley, Resummation of massive gravity, Phys. Rev. Lett. 106 (2011) 231101 [arXiv:1011.1232] [INSPIRE].
C. de Rham and G. Gabadadze, Generalization of the Fierz-Pauli action, Phys. Rev. D 82 (2010) 044020 [arXiv:1007.0443] [INSPIRE].
C. de Rham, G. Gabadadze and A.J. Tolley, Ghost free massive gravity in the Stückelberg language, Phys. Lett. B 711 (2012) 190 [arXiv:1107.3820] [INSPIRE].
S.F. Hassan, R.A. Rosen and A. Schmidt-May, Ghost-free massive gravity with a general reference metric, JHEP 02 (2012) 026 [arXiv:1109.3230] [INSPIRE].
S.F. Hassan and R.A. Rosen, Bimetric gravity from ghost-free massive gravity, JHEP 02 (2012) 126 [arXiv:1109.3515] [INSPIRE].
S. Deser and P. van Nieuwenhuizen, Nonrenormalizability of the quantized Dirac-Einstein system, Phys. Rev. D 10 (1974) 411 [INSPIRE].
R.P. Woodard, The vierbein is irrelevant in perturbation theory, Phys. Lett. B 148 (1984) 440 [INSPIRE].
J. Hoek, On the Deser-van Nieuwenhuizen algebraic vierbein gauge, Lett. Math. Phys. 6 (1982) 49 [INSPIRE].
A.H. Chamseddine and V. Mukhanov, Massive gravity simplified: a quadratic action, JHEP 08 (2011) 091 [arXiv:1106.5868] [INSPIRE].
M.S. Volkov, Hairy black holes in the ghost-free bigravity theory, Phys. Rev. D 85 (2012) 124043 [arXiv:1202.6682] [INSPIRE].
K. Hinterbichler and R.A. Rosen, Interacting spin-2 fields, JHEP 07 (2012) 047 [arXiv:1203.5783] [INSPIRE].
C. Deffayet, J. Mourad and G. Zahariade, Covariant constraints in ghost free massive gravity, JCAP 01 (2013) 032 [arXiv:1207.6338] [INSPIRE].
N.J. Higham, Computing real square roots of a real matrix, Linerar Algebra Appl. 88 (1987) 405.
J. Gallier, Logarithms and square roots of real matrices, arXiv:0805.0245.
E.A. Bergshoeff, O. Hohm and P.K. Townsend, Massive gravity in three dimensions, Phys. Rev. Lett. 102 (2009) 201301 [arXiv:0901.1766] [INSPIRE].
E.A. Bergshoeff, O. Hohm and P.K. Townsend, More on massive 3D gravity, Phys. Rev. D 79 (2009) 124042 [arXiv:0905.1259] [INSPIRE].
C. de Rham, G. Gabadadze, D. Pirtskhalava, A.J. Tolley and I. Yavin, Nonlinear dynamics of 3D massive gravity, JHEP 06 (2011) 028 [arXiv:1103.1351] [INSPIRE].
F. Uhlig, A recurring theorem about pairs of quadratic forms and extensions: a survey, Linear Algebra Appl. 25 (1979) 219.
Author information
Authors and Affiliations
Corresponding author
Additional information
UMR 7164 (CNRS, Université Paris 7, CEA, Observatoire de Paris).
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Deffayet, C., Mourad, J. & Zahariade, G. A note on “symmetric” vielbeins in bimetric, massive, perturbative and non perturbative gravities. J. High Energ. Phys. 2013, 86 (2013). https://doi.org/10.1007/JHEP03(2013)086
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP03(2013)086
Keywords
- Classical Theories of Gravity
- Gauge Symmetry
- Space-Time Symmetries
- Models of Quantum Gravity