Skip to main content
Log in

Bases in coset conformal field theory from AGT correspondence and Macdonald polynomials at the roots of unity

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We continue our study of the AGT correspondence between instanton counting on \( {{{{{\mathbb{C}}^2}}} \left/ {{{{\mathbb{Z}}_p}}} \right.} \) and Conformal field theories with the symmetry algebra \( \mathcal{A}\left( {r,p} \right) \). In the cases r = 1, p = 2 and r = 2, p = 2 this algebra specialized to: \( \mathcal{A}\left( {1,2} \right)=\mathcal{H}\oplus \widehat{\mathfrak{sl}}{(2)_1} \) and \( \mathcal{A}\left( {2,2} \right)=\mathcal{H}\oplus \widehat{\mathfrak{sl}}{(2)_2}\oplus \mathrm{NSR} \).

As the main tool we use a new construction of the algebra A(r, 2) as the limit of the toroidal \( \mathfrak{g}\mathfrak{l}(1) \) algebra for q, t tend to −1. We claim that the basis of the representation of the algebra \( \mathcal{A}\left( {r,2} \right) \) (or equivalently, of the space of the local fields of the corresponding CFT) can be expressed through Macdonald polynomials with the parameters q, t go to −1. The vertex operator which naturally arises in this construction has factorized matrix elements in this basis. We also argue that the singular vectors of the \( \mathcal{N}=1 \) Super Virasoro algebra can be realized in terms of Macdonald polynomials for a rectangular Young diagram and parameters q, t tend to −1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Belavin, M. Bershtein, B. Feigin, A. Litvinov and G. Tarnopolsky, Instanton moduli spaces and bases in coset conformal field theory, Comm. Math. Phys. (2012) [arXiv:1111.2803] [INSPIRE].

    Google Scholar 

  2. L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville correlation functions from four-dimensional gauge theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. L.F. Alday and Y. Tachikawa, Affine SL(2) conformal blocks from 4d gauge theories, Lett. Math. Phys. 94 (2010) 87 [arXiv:1005.4469] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. V.A. Alba, V.A. Fateev, A.V. Litvinov and G.M. Tarnopolskiy, On combinatorial expansion of the conformal blocks arising from AGT conjecture, Lett. Math. Phys. 98 (2011) 33 [arXiv:1012.1312] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. V. Belavin and B. Feigin, Super Liouville conformal blocks from N = 2 SU(2) quiver gauge theories, JHEP 07 (2011) 079 [arXiv:1105.5800] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. T. Nishioka and Y. Tachikawa, Central charges of para-Liouville and Toda theories from M5-branes, Phys. Rev. D 84 (2011) 046009 [arXiv:1106.1172] [INSPIRE].

    ADS  Google Scholar 

  7. A. Belavin, V. Belavin and M. Bershtein, Instantons and 2D superconformal field theory, JHEP 09 (2011) 117 [arXiv:1106.4001] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. M. Alfimov and G. Tarnopolsky, Parafermionic Liouville field theory and instantons on ALE spaces, JHEP 02 (2012) 036 [arXiv:1110.5628] [INSPIRE].

    Article  ADS  Google Scholar 

  9. B. Feigin, M. Jimbo, T. Miwa and E. Mukhin, Quantum toroidal \( \mathfrak{g}{{\mathfrak{l}}_1} \) algebra: plane partitions, arXiv:1110.5310.

  10. H. Awata, B. Feigin, A. Hoshino, M. Kanai, J. Shiraishi, et al., Notes on Ding-Iohara algebra and AGT conjecture, arXiv:1106.4088 [INSPIRE].

  11. O. Schiffmann and E. Vasserot, The elliptic Hall algebra and the equivariant K-theory of the Hilbert scheme of \( {{\mathbb{A}}^2} \), Duke Math. J. 162 (2013) 279 [arXiv:0905.2555].

    Article  MATH  Google Scholar 

  12. D. Uglov, Yangian Gelfand-Zetlin bases, gl(N) Jack polynomials and computation of dynamical correlation functions in the spin Calogero-Sutherland model, Commun. Math. Phys. 193 (1998) 663 [hep-th/9702020] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. D. Uglov, Symmetric functions and the Yangian decomposition of the Fock and Basic modules of the affine Lie algebra \( \mathfrak{s}\mathfrak{l}(N) \) q-alg/9705010.

  14. D. Bernard, M. Gaudin, F. Haldane and V. Pasquier, Yang-Baxter equation in spin chains with long range interactions, hep-th/9301084 [INSPIRE].

  15. Y. Kuramoto Y. Kato, Dynamics of one dimensional quantum systems: inverse-square interaction models, Cambridge University Press, Cambridge U.K. (2009).

    Book  MATH  Google Scholar 

  16. K. Mimachi, Y. Yamada, Singular vectors of the Virasoro algebra in terms of Jack symmetric polynomials, Comm. Math. Phys. 174 (1995) 447.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. H. Awata, Y. Matsuo, S. Odake and J. Shiraishi, Excited states of Calogero-Sutherland model and singular vectors of the W N algebra, Nucl. Phys. B 449 (1995) 347 [hep-th/9503043] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. J. Shiraishi, H. Kubo, H. Awata and S. Odake, A quantum deformation of the Virasoro algebra and the Macdonald symmetric functions, Lett. Math. Phys. 38 (1996) 33 [q-alg/9507034] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. N. Chair, V. Dobrev and H. Kanno, SO(2, \( \mathbb{C} \)) invariant ring structure of BRST cohomology and singular vectors in 2D gravity with c < 1 matter, Phys. Lett. B 283 (1992) 194 [hep-th/9201071] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  20. I.B. Frenkel, V.G. Kac, Basic representations of affine Lie algebras and dual resonance models, Inv. Math. 62 (1980) 23.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. B. Feigin, K. Hashizume, A. Hoshino, J. Shiraishi and S. Yanagida, A commutative algebra on degenerate CP 1 and Macdonald polynomials, J. Math. Phys. 50 (2009) 095215 [arXiv:0904.2291].

    Article  MathSciNet  ADS  Google Scholar 

  22. J. Lepowsky and R. Wilson, Construction of the affine Lie algebra \( \mathfrak{s}\mathfrak{l}(2) \), Commun. Math. Phys. 62 (1978) 43 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. E. Carlsson and A. Okounkov, Exts and vertex operators, arXiv:0801.2565.

  24. V. Pasquier and D. Serban, Conformal field theory and edge excitations for the principal series of quantum Hall fluids, Phys. Rev. B 63 (2001) 153311 [cond-mat/9912218] [INSPIRE].

    ADS  Google Scholar 

  25. H. Nakalima, Quiver varieties and Kac-Moody algebras, Duke Math. J. 91 (1998) 515.

    Article  MathSciNet  Google Scholar 

  26. P. Goddard, A. Kent and D.I. Olive, Unitary representations of the Virasoro and super-Virasoro algebras, Commun. Math. Phys. 103 (1986) 105 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. V. Fateev and A. Zamolodchikov, Parafermionic currents in the two-dimensional conformal quantum field theory and selfdual critical points in Z n invariant statistical systems, Sov. Phys. JETP 62 (1985) 215 [INSPIRE].

    MathSciNet  Google Scholar 

  28. A. Belavin and V. Belavin, AGT conjecture and integrable structure of conformal field theory for c = 1, Nucl. Phys. B 850 (2011) 199 [arXiv:1102.0343] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. V.G. Kac, Contravariant form for infinite-dimensional Lie algebras and superalgebras, Lect. Notes in Phys. 94 (1979) 441.

    Article  ADS  Google Scholar 

  30. A. Astashkevich, On the structure of Verma module over Virasoro and Neveu-Schwarz algebras, Commun. Math. Phys. 186 (1997) 531 [hep-th/9511032] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. P. Desrosiers, L. Lapointe and P. Mathieu, Superconformal field theory and Jack superpolynomials, JHEP 09 (2012) 037 [arXiv:1205.0784] [INSPIRE].

    Article  ADS  Google Scholar 

  32. Y. Hara, M. Jimbo, H. Konno, S. Odake and J. Shiraishi, On Lepowsky-Wilsons Z-algebra, math/0005203 [INSPIRE].

  33. T. Kimura, Matrix model from N = 2 orbifold partition function, JHEP 09 (2011) 015 [arXiv:1105.6091] [INSPIRE].

    Article  ADS  Google Scholar 

  34. T. Kimura, β-ensembles for toric orbifold partition function, Prog. Theor. Phys. 127 (2012) 271 [arXiv:1109.0004] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  35. A. Belavin and B. Mukhametzhanov, N = 1 superconformal blocks with Ramond fields from AGT correspondence, JHEP 01 (2013) 178 [arXiv:1210.7454] [INSPIRE].

    Article  Google Scholar 

  36. G. Bonelli, K. Maruyoshi and A. Tanzini, Gauge theories on ALE space and super Liouville correlation functions, Lett. Math. Phys. 101 (2012) 103 [arXiv:1107.4609] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. I. Macdonald, Symmetric functions and Hall polynomials, Clarendon Press, Oxford U.K. (1995).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Bershtein.

Additional information

ArXiv ePrint: 1211.2788

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belavin, A.A., Bershtein, M.A. & Tarnopolsky, G.M. Bases in coset conformal field theory from AGT correspondence and Macdonald polynomials at the roots of unity. J. High Energ. Phys. 2013, 19 (2013). https://doi.org/10.1007/JHEP03(2013)019

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2013)019

Keywords

Navigation