Skip to main content
Log in

Derivation of the blackfold effective theory

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study fluctuations and deformations of black branes over length scales larger than the horizon radius. We prove that the Einstein equations for the perturbed p-brane yield, as constraints, the equations of the effective blackfold theory. We solve the Einstein equations for the perturbed geometry and show that it remains regular on and outside the black brane horizon. This study provides an ab initio derivation of the blackfold effective theory and gives explicit expressions for the metrics near the new black holes and black branes that result from it, to leading order in a derivative expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, World-volume effective theory for higher-dimensional black holes, Phys. Rev. Lett. 102 (2009) 191301 [arXiv:0902.0427] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, Essentials of blackfold dynamics, JHEP 03 (2010) 063 [arXiv:0910.1601] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, New horizons for black holes and branes, JHEP 04 (2010) 046 [arXiv:0912.2352] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. J. Camps, R. Emparan and N. Haddad, Black brane viscosity and the Gregory-Laflamme instability, JHEP 05 (2010) 042 [arXiv:1003.3636] [INSPIRE].

    Article  ADS  Google Scholar 

  5. E. Poisson, A. Pound and I. Vega, The motion of point particles in curved spacetime, Living Rev. Rel. 14 (2011) 7 [arXiv:1102.0529] [INSPIRE].

    Google Scholar 

  6. B. Carter, Essentials of classical brane dynamics, Int. J. Theor. Phys. 40 (2001) 2099 [gr-qc/0012036] [INSPIRE].

    Article  MATH  Google Scholar 

  7. S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear fluid dynamics from gravity, JHEP 02 (2008) 045 [arXiv:0712.2456] [INSPIRE].

    Article  ADS  Google Scholar 

  8. R.C. Myers, Stress tensors and Casimir energies in the AdS/CFT correspondence, Phys. Rev. D 60 (1999) 046002 [hep-th/9903203] [INSPIRE].

    ADS  Google Scholar 

  9. J.D. Brown and J.W. York Jr., Quasilocal energy and conserved charges derived from the gravitational action, Phys. Rev. D 47 (1993) 1407 [gr-qc/9209012] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  10. B. Carter, Outer curvature and conformal geometry of an imbedding, J. Geom. Phys. 8 (1992) 53 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. J. Camps, R. Emparan, P. Figueras, S. Giusto and A. Saxena, Black rings in Taub-NUT and D0-D6 interactions, JHEP 02 (2009) 021 [arXiv:0811.2088] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. R. Emparan, T. Harmark, V. Niarchos, N.A. Obers and M.J. Rodríguez, The phase structure of higher-dimensional black rings and black holes, JHEP 10 (2007) 110 [arXiv:0708.2181] [INSPIRE].

    Article  ADS  Google Scholar 

  13. M.M. Caldarelli, R. Emparan and M.J. Rodríguez, Black rings in (Anti)-de Sitter space, JHEP 11 (2008) 011 [arXiv:0806.1954] [INSPIRE].

    Article  ADS  Google Scholar 

  14. J. Armas and N.A. Obers, Blackfolds in (Anti)-de Sitter backgrounds, Phys. Rev. D 83 (2011) 084039 [arXiv:1012.5081] [INSPIRE].

    ADS  Google Scholar 

  15. J. Armas, J. Camps, T. Harmark and N.A. Obers, The Young modulus of black strings and the fine structure of blackfolds, JHEP 02 (2012) 110 [arXiv:1110.4835] [INSPIRE].

    Article  ADS  Google Scholar 

  16. M.M. Caldarelli, R. Emparan and B. Van Pol, Higher-dimensional rotating charged black holes, JHEP 04 (2011) 013 [arXiv:1012.4517] [INSPIRE].

    Article  ADS  Google Scholar 

  17. R. Emparan and N. Haddad, Self-similar critical geometries at horizon intersections and mergers, JHEP 10 (2011) 064 [arXiv:1109.1983] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. G. Grignani, T. Harmark, A. Marini, N.A. Obers and M. Orselli, Heating up the BIon, JHEP 06 (2011) 058 [arXiv:1012.1494] [INSPIRE].

    Article  ADS  Google Scholar 

  19. R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, Blackfolds in supergravity and string theory, JHEP 08 (2011) 154 [arXiv:1106.4428] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan Camps.

Additional information

ArXiv ePrint: 1201.3506

Rights and permissions

Reprints and permissions

About this article

Cite this article

Camps, J., Emparan, R. Derivation of the blackfold effective theory. J. High Energ. Phys. 2012, 38 (2012). https://doi.org/10.1007/JHEP03(2012)038

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2012)038

Keywords

Navigation