Advertisement

Scaled momentum distributions for \( K_S^0 \)KS and \( \Lambda /\bar{\Lambda } \) in DIS at HERA

  • The ZEUS collaboration
  • H. Abramowicz
  • I. Abt
  • L. Adamczyk
  • M. Adamus
  • R. Aggarwal
  • S. Antonelli
  • P. Antonioli
  • A. Antonov
  • M. Arneodo
  • V. Aushev
  • Y. Aushev
  • O. Bachynska
  • A. Bamberger
  • A. N. Barakbaev
  • G. Barbagli
  • G. Bari
  • F. Barreiro
  • N. Bartosik
  • D. Bartsch
  • M. Basile
  • O. Behnke
  • J. Behr
  • U. Behrens
  • L. Bellagamba
  • A. Bertolin
  • S. Bhadra
  • M. Bindi
  • C. Blohm
  • V. Bokhonov
  • T. Bold
  • K. Bondarenko
  • E. G. Boos
  • K. Borras
  • D. Boscherini
  • D. Bot
  • I. Brock
  • E. Brownson
  • R. Brugnera
  • N. Brümmer
  • A. Bruni
  • G. Bruni
  • B. Brzozowska
  • P. J. Bussey
  • B. Bylsma
  • A. Caldwell
  • M. Capua
  • R. Carlin
  • C. D. Catterall
  • S. Chekanov
  • J. Chwastowski
  • J. Ciborowski
  • R. Ciesielski
  • L. Cifarelli
  • F. Cindolo
  • A. Contin
  • A. M. Cooper-Sarkar
  • N. Coppola
  • M. Corradi
  • F. Corriveau
  • M. Costa
  • G. D’Agostini
  • F. Dal Corso
  • J. del Peso
  • R. K. Dementiev
  • S. De Pasquale
  • M. Derrick
  • R. C. E. Devenish
  • D. Dobur
  • B. A. Dolgoshein
  • G. Dolinska
  • A. T. Doyle
  • V. Drugakov
  • L. S. Durkin
  • S. Dusini
  • Y. Eisenberg
  • P. F. Ermolov
  • A. Eskreys
  • S. Fang
  • S. Fazio
  • J. Ferrando
  • M. I. Ferrero
  • J. Figiel
  • M. Forrest
  • B. Foster
  • G. Gach
  • A. Galas
  • E. Gallo
  • A. Garfagnini
  • A. Geiser
  • I. Gialas
  • L. K. Gladilin
  • D. Gladkov
  • C. Glasman
  • O. Gogota
  • Yu. A. Golubkov
  • P. Göttlicher
  • I. Grabowska-Bold
  • J. Grebenyuk
  • I. Gregor
  • G. Grigorescu
  • G. Grzelak
  • O. Gueta
  • M. Guzik
  • C. Gwenlan
  • T. Haas
  • W. Hain
  • R. Hamatsu
  • J. C. Hart
  • H. Hartmann
  • G. Hartner
  • E. Hilger
  • D. Hochman
  • R. Hori
  • K. Horton
  • A. Hüttmann
  • Z. A. Ibrahim
  • Y. Iga
  • R. Ingbir
  • M. Ishitsuka
  • H.-P. Jakob
  • F. Januschek
  • T. W. Jones
  • M. Jüngst
  • I. Kadenko
  • B. Kahle
  • S. Kananov
  • T. Kanno
  • U. Karshon
  • F. Karstens
  • I. I. Katkov
  • M. Kaur
  • P. Kaur
  • A. Keramidas
  • L. A. Khein
  • J. Y. Kim
  • D. Kisielewska
  • S. Kitamura
  • R. Klanner
  • U. Klein
  • E. Koffeman
  • P. Kooijman
  • Ie. Korol
  • I. A. Korzhavina
  • A. Kotanski
  • U. Kötz
  • H. Kowalski
  • O. Kuprash
  • M. Kuze
  • A. Lee
  • B. B. Levchenko
  • A. Levy
  • V. Libov
  • S. Limentani
  • T. Y. Ling
  • M. Lisovyi
  • E. Lobodzinska
  • W. Lohmann
  • B. Löhr
  • E. Lohrmann
  • K. R. Long
  • A. Longhin
  • D. Lontkovskyi
  • O.Yu. Lukina
  • J. Maeda
  • S. Magill
  • I. Makarenko
  • J. Malka
  • R. Mankel
  • A. Margotti
  • G. Marini
  • J. F. Martin
  • A. Mastroberardino
  • M. C. K. Mattingly
  • I.-A. Melzer-Pellmann
  • S. Mergelmeyer
  • S. Miglioranzi
  • F. Mohamad Idris
  • V. Monaco
  • A. Montanari
  • J. D. Morris
  • K. Mujkic
  • B. Musgrave
  • K. Nagano
  • T. Namsoo
  • R. Nania
  • A. Nigro
  • Y. Ning
  • T. Nobe
  • U. Noor
  • D. Notz
  • R. J. Nowak
  • A. E. Nuncio-Quiroz
  • B. Y. Oh
  • N. Okazaki
  • K. Oliver
  • K. Olkiewicz
  • Yu. Onishchuk
  • K. Papageorgiu
  • A. Parenti
  • E. Paul
  • J. M. Pawlak
  • B. Pawlik
  • P. G. Pelfer
  • A. Pellegrino
  • W. Perlanski
  • H. Perrey
  • K. Piotrzkowski
  • P. Plucinski
  • N. S. Pokrovskiy
  • A. Polini
  • A. S. Proskuryakov
  • M. Przybycien
  • A. Raval
  • D. D. Reeder
  • B. Reisert
  • Z. Ren
  • J. Repond
  • Y. D. Ri
  • A. Robertson
  • P. Roloff
  • I. Rubinsky
  • M. Ruspa
  • R. Sacchi
  • A. Salii
  • U. Samson
  • G. Sartorelli
  • A. A. Savin
  • D. H. Saxon
  • M. Schioppa
  • S. Schlenstedt
  • P. Schleper
  • W. B. Schmidke
  • U. Schneekloth
  • V. Schönberg
  • T. Schörner-Sadenius
  • J. Schwartz
  • F. Sciulli
  • L. M. Shcheglova
  • R. Shehzadi
  • S. Shimizu
  • I. Singh
  • I. O. Skillicorn
  • W. Slominski
  • W. H. Smith
  • V. Sola
  • A. Solano
  • D. Son
  • V. Sosnovtsev
  • A. Spiridonov
  • H. Stadie
  • L. Stanco
  • A. Stern
  • T.P. Stewart
  • A. Stifutkin
  • P. Stopa
  • S. Suchkov
  • G. Susinno
  • L. Suszycki
  • J. Sztuk-Dambietz
  • D. Szuba
  • J. Szuba
  • A. D. Tapper
  • E. Tassi
  • J. Terrón
  • T. Theedt
  • H. Tiecke
  • K. Tokushuku
  • O. Tomalak
  • J. Tomaszewska
  • T. Tsurugai
  • M. Turcato
  • T. Tymieniecka
  • M. Vázquez
  • A. Verbytskyi
  • O. Viazlo
  • N. N. Vlasov
  • O. Volynets
  • R. Walczak
  • W. A. T. Wan Abdullah
  • J. J. Whitmore
  • L. Wiggers
  • M. Wing
  • M. Wlasenko
  • G. Wolf
  • H. Wolfe
  • K. Wrona
  • A. G. Yagües-Molina
  • S. Yamada
  • Y. Yamazaki
  • R. Yoshida
  • C. Youngman
  • A. F. Żarnecki
  • L. Zawiejski
  • O. Zenaiev
  • W. Zeuner
  • B. O. Zhautykov
  • N. Zhmak
  • C. Zhou
  • A. Zichichi
  • Z. Zolkapli
  • M. Zolko
  • D. S. Zotkin
Open Access
Article

Abstract

Scaled momentum distributions for the strange hadrons \( K_{\text{S}}^0 \) and \( \Lambda /\bar{\Lambda } \) were measured in deep inelastic ep scattering with the ZEUS detector at HERA using an integrated luminosity of 330 pb−1. The evolution of these distributions with the photon virtuality, Q 2, was studied in the kinematic region 10 < Q 2< 40000 GeV2 and 0.001 < x < 0.75, where x is the Bjorken scaling variable. Clear scaling violations are observed. Predictions based on different approaches to fragmentation were compared to the measurements. Leading-logarithm parton-shower Monte Carlo calculations interfaced to the Lund string fragmentation model describe the data reasonably well in the whole range measured. Next-to-leading-order QCD calculations based on fragmentation functions, FFs, extracted from e + e data alone, fail to describe the measurements. The calculations based on FFs extracted from a global analysis including e + e , ep and pp data give an improved description. The measurements presented in this paper have the potential to further constrain the FFs of quarks, anti-quarks and gluons yielding \( K_{\text{S}}^0 \) and \( \Lambda /\bar{\Lambda } \) strange hadrons.

Keywords

Lepton-Nucleon Scattering 

References

  1. [1]
    B. Andersson, G. Gustafson, G. Ingelman and T. Sjöstrand, Parton fragmentation and string dynamics, Phys. Rept. 97 (1983) 31 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    G. Altarelli, R. Ellis, G. Martinelli and S.-Y. Pi, Processes involving fragmentation functions beyond the leading order in QCD, Nucl. Phys. B 160 (1979) 301 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    W. Furmanski and R. Petronzio, Lepton-hadron processes beyond leading order in quantum chromodynamics, Z. Phys. C 11 (1982) 293 [INSPIRE].ADSGoogle Scholar
  4. [4]
    P. Nason and B. Webber, Scaling violation in e + e fragmentation functions: QCD evolution, hadronization and heavy quark mass effects, Nucl. Phys. B 421 (1994) 473 [Erratum ibid. B 480 (1996)755] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    J.C. Collins and D.E. Soper, Back-to-back jets in QCD, Nucl. Phys. B 193 (1981) 381 [Erratum ibid. B 213 (1983) 545] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    J.C. Collins and D.E. Soper, Parton distribution and decay functions, Nucl. Phys. B 194 (1982) 445 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    ALEPH collaboration, R. Barate et al., Studies of quantum chromodynamics with the ALEPH detector, Phys. Rept. 294 (1998) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    ALEPH collaboration, A. Heister et al., Studies of QCD at e + e centre-of-mass energies between 91 GeV and 209 GeV, Eur. Phys. J. C 35 (2004) 457 [INSPIRE].ADSGoogle Scholar
  9. [9]
    AMY collaboration, Y. Li et al., Multi-hadron event properties in e + e annihilation at \( \sqrt {s} = {52}\;GeV \) to 57GeV, Phys. Rev. D 41(1990) 2675 [INSPIRE].ADSGoogle Scholar
  10. [10]
    DELPHI collaboration, P. Abreu et al., π± , K ± , p and p production in Z 0q q, Z 0bb, Z 0uu, d, ss, Eur. Phys. J. C 5 (1998) 585 [INSPIRE].CrossRefGoogle Scholar
  11. [11]
    DELPHI collaboration, P. Abreu et al., Energy dependence of inclusive spectra in e + e annihilation, Phys. Lett. B 459 (1999) 397 [INSPIRE].ADSGoogle Scholar
  12. [12]
    DELPHI collaboration, P. Abreu et al., Charged and identified particles in the hadronic decay of W bosons and in e + e q q from 130 GeV to 200 GeV, Eur. Phys. J. C 18 (2000) 203 [Erratum ibid. C 25 (2002) 493] [hep-ex/0103031] [INSPIRE].ADSGoogle Scholar
  13. [13]
    DELPHI collaboration, J. Abdallah et al., Study of leading hadrons in gluon and quark fragmentation, Phys. Lett. B 643 (2006) 147 [hep-ex/0610031] [INSPIRE].ADSGoogle Scholar
  14. [14]
    L3 collaboration, P. Achard et al., Studies of hadronic event structure in e + e annihilation from 30 GeV to 209 GeV with the L3 detector, Phys. Rept. 399 (2004) 71 [hep-ex/0406049] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    MARK II collaboration, A. Petersen et al., Multi-hadronic events at E c.m. = 29 GeV and predictions of QCD models from E c.m. = 29 GeV to E c.m. = 93 GeV, Phys. Rev. D 37 (1988) 1 [INSPIRE].ADSGoogle Scholar
  16. [16]
    OPAL collaboration, G. Alexander et al., QCD studies with e + e annihilation data at 130 GeV and 136 GeV, Z. Phys. C 72 (1996) 191 [INSPIRE].ADSGoogle Scholar
  17. [17]
    OPAL collaboration, G. Abbiendi et al., Leading particle production in light flavor jets, Eur. Phys. J. C 16 (2000) 407 [hep-ex/0001054] [INSPIRE].ADSGoogle Scholar
  18. [18]
    TASSO collaboration, W. Braunschweig et al., Global jet properties at 14 GeV to 44 GeV center-of-mass energy in e + e annihilation, Z. Phys. C 47 (1990) 187 [INSPIRE].Google Scholar
  19. [19]
    DELPHI collaboration, P. Abreu et al., Determination of αs from the scaling violation in the fragmentation functions in e + e annihilation, Phys. Lett. B 311 (1993) 408 [INSPIRE].ADSGoogle Scholar
  20. [20]
    BRAHMS collaboration, I. Arsene et al., Production of mesons and baryons at high rapidity and high p T in proton-proton collisions at \( \sqrt {s} = {2}00\;GeV \), Phys. Rev. Lett. 98 (2007) 252001 [hep-ex/0701041] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    PHENIX collaboration, S. Adler et al., Mid-rapidity neutral pion production in proton proton collisions at \( \sqrt {s} = {2}00\;GeV \), Phys. Rev. Lett. 91 (2003) 241803 [hep-ex/0304038] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    STAR collaboration, J. Adams et al., Forward neutral pion production in p + p and d + Au collisions at \( \sqrt {{{s_{N\;N}}}} = {2}00\;GeV \), Phys. Rev. Lett. 97 (2006) 152302 [nucl-ex/0602011] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    STAR collaboration, B. Abelev et al., Strange particle production in p + p collisions at \( \sqrt {s} = {2}00\;GeV \), Phys. Rev. C 75(2007) 064901 [nucl-x/0607033][INSPIRE].ADSGoogle Scholar
  24. [24]
    CDF collaboration, D. Acosta et al., \( K_S^0 \) and Λ0 production studies in pp collisions at \( \sqrt {\text{s}} = {18}00\;GeV \) and 630 GeV, Phys. Rev. D 72 (2005) 052001 [hep-ex/0504048] [INSPIRE].ADSGoogle Scholar
  25. [25]
    ZEUS collaboration, M. Derrick et al., Measurement of multiplicity and momentum spectra in the current fragmentation region of the Breit frame at HERA, Z. Phys. C 67 (1995) 93 [hep-ex/9501012] [INSPIRE].ADSGoogle Scholar
  26. [26]
    ZEUS collaboration, J. Breitweg et al., Observation of scaling violations in scaled momentum distributions at HERA, Phys. Lett. B 414 (1997) 428 [hep-ex/9710011] [INSPIRE].ADSGoogle Scholar
  27. [27]
    ZEUS collaboration, J. Breitweg et al., Measurement of multiplicity and momentum spectra in the current and target regions of the Breit frame in deep inelastic scattering at HERA, Eur. Phys. J. C 11 (1999) 251 [hep-ex/9903056] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    ZEUS collaboration, H. Abramowicz et al., Scaled momentum spectra in deep inelastic scattering at HERA, JHEP 06 (2010) 009 [Erratum ibid. 10 (2010) 030] [arXiv:1001.4026] [INSPIRE].ADSGoogle Scholar
  29. [29]
    H1 collaboration, F. Aaron et al., Charged particle production in high Q 2 deep-inelastic scattering at HERA, Phys. Lett. B 654 (2007) 148 [arXiv:0706.2456] [INSPIRE].ADSGoogle Scholar
  30. [30]
    H1 collaboration, S. Aid et al., A study of the fragmentation of quarks in e p collisions at HERA, Nucl. Phys. B 445 (1995) 3 [hep-ex/9505003] [INSPIRE].ADSGoogle Scholar
  31. [31]
    H1 collaboration, C. Adloff et al., Evolution of ep fragmentation and multiplicity distributions in the Breit frame, Nucl. Phys. B 504 (1997) 3 [hep-ex/9707005] [INSPIRE].ADSGoogle Scholar
  32. [32]
    H1 collaboration, F. Aaron et al., Observation of the hadronic final state charge asymmetry in high Q 2 deep-inelastic scattering at HERA, Phys. Lett. B 681 (2009) 125 [arXiv:0907.2666] [INSPIRE].ADSGoogle Scholar
  33. [33]
    H1 collaboration, F. Aaron et al., Strangeness production at low Q 2 in deep-inelastic ep scattering at HERA, Eur. Phys. J. C 61 (2009) 185 [arXiv:0810.4036] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    S. Kretzer, Fragmentation functions from flavor inclusive and flavor tagged e + e annihilations, Phys. Rev. D 62 (2000) 054001 [hep-ph/0003177] [INSPIRE].ADSGoogle Scholar
  35. [35]
    B.A. Kniehl, G. Kramer and B. Pötter, Strong coupling constant from scaling violations in fragmentation functions, Phys. Rev. Lett. 85 (2000) 5288 [hep-ph/0003297] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    S. Albino, B. Kniehl, G. Kramer and C. Sandoval, Confronting fragmentation function universality with single hadron inclusive production at HERA and e + e colliders, Phys. Rev. D 75 (2007) 034018 [hep-ph/0611029] [INSPIRE].ADSGoogle Scholar
  37. [37]
    S. Albino, B. Kniehl and G. Kramer, AKK update: improvements from new theoretical input and experimental data, Nucl. Phys. B 803 (2008) 42 [arXiv:0803.2768] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    D. de Florian, R. Sassot and M. Stratmann, Global analysis of fragmentation functions for pions and kaons and their uncertainties, Phys. Rev. D 75 (2007) 114010 [hep-ph/0703242] [INSPIRE].ADSGoogle Scholar
  39. [39]
    D. de Florian, R. Sassot and M. Stratmann, Global analysis of fragmentation functions for protons and charged hadrons, Phys. Rev. D 76 (2007) 074033 [arXiv:0707.1506] [INSPIRE].ADSGoogle Scholar
  40. [40]
    S. Albino, B. Kniehl and G. Kramer, Fragmentation functions for K S and Λ with complete quark flavor separation, Nucl. Phys. B 734 (2006) 50 [hep-ph/0510173] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    F. Arleo, (Medium-modified) fragmentation functions, Eur. Phys. J. C 61 (2009) 603 [arXiv:0810.1193] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    R.P. Feynman, Photon-hadron interactions, Benjamin, New York U.S.A. (1972).Google Scholar
  43. [43]
    K. Streng, T. Walsh and P. Zerwas, Quark and gluon jets in the Breit frame of lepton-nucleon scattering, Z. Phys. C 2 (1979) 237 [INSPIRE].ADSGoogle Scholar
  44. [44]
    A. Hillenbrand, Measurement and simulation of the fragmentation process at HERMES, Ph.D. thesis, report DESY-THESIS-2005-035, Erlangen University, Erlangen Germany (2005) [ISSN:1435-8085] [INSPIRE].
  45. [45]
    ZEUS collaboration, M. Derrick et al., A measurement of σtotp) at \( \sqrt {s} = {21}0\;GeV \), Phys. Lett. B 293 (1992) 465 [INSPIRE].ADSGoogle Scholar
  46. [46]
    ZEUS collaboration, U. Holm ed., The ZEUS detector, status report, unpublished, available on http://www-zeus.desy.de/bluebook/bluebook.html, DESY, Germany (1993).
  47. [47]
    N. Harnew et al., Vertex triggering using time difference measurements in the ZEUS central tracking detector, Nucl. Instrum. Meth. A 279 (1989) 290 [INSPIRE].ADSGoogle Scholar
  48. [48]
    B. Foster et al., The performance of the ZEUS central tracking detector z-by-timing electronics in a transputer based data acquisition system, Nucl. Phys. Proc. Suppl. B 32 (1993) 181 [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    B. Foster et al., The design and construction of the ZEUS central tracking detector, Nucl. Instrum. Meth. A 338 (1994) 254 [INSPIRE].ADSGoogle Scholar
  50. [50]
    A. Polini et al., The design and performance of the ZEUS micro vertex detector, Nucl. Instrum. Meth. A 581 (2007) 656 [arXiv:0708.3011] [INSPIRE].ADSGoogle Scholar
  51. [51]
    S. Fourletov et al., Straw Tube Tracking detector (STT) for ZEUS, Nucl. Instrum. Meth. A 535 (2004) 191 [INSPIRE].ADSGoogle Scholar
  52. [52]
    M. Derrick et al., Design and construction of the ZEUS barrel calorimeter, Nucl. Instrum. Meth. A 309 (1991) 77 [INSPIRE].ADSGoogle Scholar
  53. [53]
    A. Andresen et al., Construction and beam test of the ZEUS forward and rear calorimeter, Nucl. Instrum. Meth. A 309 (1991) 101 [INSPIRE].ADSGoogle Scholar
  54. [54]
    A. Caldwell et al., Design and implementation of a high precision readout system for the ZEUS calorimeter, Nucl. Instrum. Meth. A 321 (1992) 356 [INSPIRE].ADSGoogle Scholar
  55. [55]
    A. Bernstein et al., Beam tests of the ZEUS barrel calorimeter, Nucl. Instrum. Meth. A 336 (1993) 23 [INSPIRE].ADSGoogle Scholar
  56. [56]
    ZEUS collaboration, S. Chekanov et al., Measurement of the neutral current cross-section and F 2 structure function for deep inelastic e + p scattering at HERA, Eur. Phys. J. C 21 (2001) 443 [hep-ex/0105090] [INSPIRE].ADSGoogle Scholar
  57. [57]
    A. Bamberger et al., The small angle rear tracking detector of ZEUS, Nucl. Instrum. Meth. A 401 (1997) 63 [INSPIRE].ADSGoogle Scholar
  58. [58]
    A. Bamberger et al., The presampler for the forward and rear calorimeter in the ZEUS detector, Nucl. Instrum. Meth. A 382 (1996) 419 [hep-ex/9609006] [INSPIRE].ADSGoogle Scholar
  59. [59]
    J. Andruszków et al., First measurement of HERA luminosity by ZEUS lumi monitor, preprint DESY-92-066, DESY, Germany (1992) [INSPIRE].Google Scholar
  60. [60]
    ZEUS collaboration, M. Derrick et al., Measurement of total and partial photon proton cross-sections at 180 GeV center-of-mass energy, Z. Phys. C 63 (1994) 391 [INSPIRE].ADSGoogle Scholar
  61. [61]
    J. Andruszków et al., Luminosity measurement in the ZEUS experiment, Acta Phys. Polon. B 32 (2001) 2025 [INSPIRE].ADSGoogle Scholar
  62. [62]
    M. Helbich et al., The spectrometer system for measuring ZEUS luminosity at HERA, Nucl. Instrum. Meth. A 565 (2006) 572 [physics/0512153] [INSPIRE].ADSGoogle Scholar
  63. [63]
    W.H. Smith, K. Tokushuku and L.W. Wiggers, The ZEUS trigger system, in Proc. Computing in High-Energy Physics (CHEP), Annecy, France, Sept. 1992, C. Verkerk and W. Wojcik eds., CERN, Geneva Switzerland (1992), pg. 222 [DESY-92-150B] [INSPIRE].
  64. [64]
    H. Abramowicz, A. Caldwell and R. Sinkus, Neural network based electron identification in the ZEUS calorimeter, Nucl. Instrum. Meth. A 365 (1995) 508 [hep-ex/9505004] [INSPIRE].ADSGoogle Scholar
  65. [65]
    S. Bentvelsen, J. Engelen and P. Kooijman, Reconstruction of (x, Q 2) and extraction of structure functions in neutral current scattering at HERA, in Proc. of the Workshop on Physics at HERA, volume 1, W. Buchmüller and G. Ingelman eds., DESY, Hamburg Germany (1992), pg. 23 [INSPIRE].
  66. [66]
    F. Jacquet and A. Blondel, Detection of the charged current eventmethod II, in Proc. of the Study for an ep Facility for Europe, U. Amaldi ed., Hamburg Germany (1979), pg. 391 [DESY-79-48] [INSPIRE].
  67. [67]
    ZEUS collaboration, S. Chekanov et al., Bose-Einstein correlations of charged and neutral kaons in deep inelastic scattering at HERA, Phys. Lett. B 652 (2007) 1 [arXiv:0706.2538] [INSPIRE].ADSGoogle Scholar
  68. [68]
    J. Podolanski and R. Armenteros, Analysis of V-events, Phil. Mag. 45 (1954) 13.Google Scholar
  69. [69]
    R. Brun et al., Geant3, technical report CERN-DD-EE-84-1, CERN, Geneva Switzerland (1987) [INSPIRE].Google Scholar
  70. [70]
    G. Ingelman, A. Edin and J. Rathsman, LEPTO 6.5: a Monte Carlo generator for deep inelastic lepton-nucleon scattering, Comput. Phys. Commun. 101 (1997) 108 [hep-ph/9605286] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    A. Kwiatkowski, H. Spiesberger and H. Möhring, HERACLES: an event generator for ep interactions at HERA energies including radiative processes: version 1.0, Comput. Phys. Commun. 69 (1992) 155 [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    H. Spiesberger, An event generator for ep interactions at HERA including radiative processes (version 4.6), available on http://www.desy.de/~hspiesb/heracles.html, DESY, Germany (1996).
  73. [73]
    K. Charchula, G. Schuler and H. Spiesberger, Combined QED and QCD radiative effects in deep inelastic lepton-proton scattering: the Monte Carlo generator DJANGO6, Comput. Phys. Commun. 81 (1994) 381 [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    H. Spiesberger, heracles and djangoh: event generation for ep interactions at HERA including radiative processes, available on http://wwwthep.physik.uni-mainz.de/~hspiesb/djangoh/djangoh.html, DESY, Germany (1998).
  75. [75]
    Y.I. Azimov, Y.L. Dokshitzer, V.A. Khoze and S. Troian, The string effect and QCD coherence, Phys. Lett. B 165 (1985) 147 [INSPIRE].ADSGoogle Scholar
  76. [76]
    G. Gustafson, Dual description of a confined color field, Phys. Lett. B 175 (1986) 453 [INSPIRE].ADSGoogle Scholar
  77. [77]
    G. Gustafson and U. Pettersson, Dipole formulation of QCD cascades, Nucl. Phys. B 306 (1988) 746 [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    B. Andersson, G. Gustafson, L. Lönnblad and U. Pettersson, Coherence effects in deep inelastic scattering, Z. Phys. C 43 (1989) 625 [INSPIRE].ADSGoogle Scholar
  79. [79]
    L. Lönnblad, ARIADNE version 4: a program for simulation of QCD cascades implementing the color dipole model, Comput. Phys. Commun. 71 (1992) 15 [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    L. Lönnblad, Rapidity gaps and other final state properties in the color dipole model for deep inelastic scattering, Z. Phys. C 65 (1995) 285 [INSPIRE].ADSGoogle Scholar
  81. [81]
    T. Sjöstrand, High-energy physics event generation with PYTHIA 5.7 and JETSET 7.4, Comput. Phys. Commun. 82 (1994) 74 [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    T. Sjöstrand et al., High-energy physics event generation with PYTHIA 6.1, Comput. Phys. Commun. 135 (2001) 238 [hep-ph/0010017] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  83. [83]
    T. Sjöstrand, The Lund Monte Carlo for jet fragmentation and e + e physics: JETSET version 6.2, Comput. Phys. Commun. 39 (1986) 347 [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    T. Sjöstrand and M. Bengtsson, The Lund Monte Carlo for jet fragmentation and e + e physics. JETSET version 6.3: an update, Comput. Phys. Commun. 43 (1987) 367 [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    European Muon collaboration, M. Arneodo et al., Comparison between hadronic final states produced in μp and e + e interactions, Z. Phys. C 35 (1987) 417 [INSPIRE].ADSGoogle Scholar
  86. [86]
    CTEQ collaboration, H. Lai et al., Global QCD analysis of parton structure of the nucleon: CTEQ5 parton distributions, Eur. Phys. J. C 12 (2000) 375 [hep-ph/9903282] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    D. Graudenz, Charged meson production and scaling violations of fragmentation functions in deeply inelastic scattering at HERA, Phys. Lett. B 406 (1997) 178 [hep-ph/9606470] [INSPIRE].ADSGoogle Scholar
  88. [88]
    J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    S. Albino, B. Kniehl, G. Kramer and W. Ochs, Generalizing the DGLAP evolution of fragmentation functions to the smallest x values, Phys. Rev. Lett. 95 (2005) 232002 [hep-ph/0503170] [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    A. Martin, R. Roberts, W. Stirling and R. Thorne, NNLO global parton analysis, Phys. Lett. B 531 (2002) 216 [hep-ph/0201127] [INSPIRE].ADSGoogle Scholar
  91. [91]
    R. Sassot, private communication.Google Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • The ZEUS collaboration
  • H. Abramowicz
    • 45
  • I. Abt
    • 35
  • L. Adamczyk
    • 13
  • M. Adamus
    • 54
  • R. Aggarwal
    • 7
  • S. Antonelli
    • 4
  • P. Antonioli
    • 3
  • A. Antonov
    • 33
  • M. Arneodo
    • 50
  • V. Aushev
    • 26
    • 27
  • Y. Aushev
    • 27
  • O. Bachynska
    • 15
  • A. Bamberger
    • 19
  • A. N. Barakbaev
    • 25
  • G. Barbagli
    • 17
  • G. Bari
    • 3
  • F. Barreiro
    • 30
  • N. Bartosik
    • 27
  • D. Bartsch
    • 5
  • M. Basile
    • 4
  • O. Behnke
    • 15
  • J. Behr
    • 15
  • U. Behrens
    • 15
  • L. Bellagamba
    • 3
  • A. Bertolin
    • 39
  • S. Bhadra
    • 57
  • M. Bindi
    • 4
  • C. Blohm
    • 15
  • V. Bokhonov
    • 26
  • T. Bold
    • 13
  • K. Bondarenko
    • 27
  • E. G. Boos
    • 25
  • K. Borras
    • 15
  • D. Boscherini
    • 3
  • D. Bot
    • 15
  • I. Brock
    • 5
  • E. Brownson
    • 56
  • R. Brugnera
    • 40
  • N. Brümmer
    • 37
  • A. Bruni
    • 3
  • G. Bruni
    • 3
  • B. Brzozowska
    • 53
  • P. J. Bussey
    • 20
  • B. Bylsma
    • 37
  • A. Caldwell
    • 35
  • M. Capua
    • 8
  • R. Carlin
    • 40
  • C. D. Catterall
    • 57
  • S. Chekanov
    • 1
  • J. Chwastowski
    • 12
    • 61
  • J. Ciborowski
    • 53
    • 82
  • R. Ciesielski
    • 15
    • 62
  • L. Cifarelli
    • 4
  • F. Cindolo
    • 3
  • A. Contin
    • 4
  • A. M. Cooper-Sarkar
    • 38
  • N. Coppola
    • 15
  • M. Corradi
    • 3
  • F. Corriveau
    • 31
  • M. Costa
    • 49
  • G. D’Agostini
    • 43
  • F. Dal Corso
    • 39
  • J. del Peso
    • 30
  • R. K. Dementiev
    • 34
  • S. De Pasquale
    • 4
    • 58
  • M. Derrick
    • 1
  • R. C. E. Devenish
    • 38
  • D. Dobur
    • 19
    • 72
  • B. A. Dolgoshein
    • 33
  • G. Dolinska
    • 26
    • 27
  • A. T. Doyle
    • 20
  • V. Drugakov
    • 16
  • L. S. Durkin
    • 37
  • S. Dusini
    • 39
  • Y. Eisenberg
    • 55
  • P. F. Ermolov
    • 34
  • A. Eskreys
    • 12
  • S. Fang
    • 15
    • 63
  • S. Fazio
    • 8
  • J. Ferrando
    • 38
  • M. I. Ferrero
    • 49
  • J. Figiel
    • 12
  • M. Forrest
    • 20
    • 75
  • B. Foster
    • 38
  • G. Gach
    • 13
  • A. Galas
    • 12
  • E. Gallo
    • 17
  • A. Garfagnini
    • 40
  • A. Geiser
    • 15
  • I. Gialas
    • 21
    • 76
  • L. K. Gladilin
    • 34
  • D. Gladkov
    • 33
  • C. Glasman
    • 30
  • O. Gogota
    • 26
    • 27
  • Yu. A. Golubkov
    • 34
  • P. Göttlicher
    • 15
    • 64
  • I. Grabowska-Bold
    • 13
  • J. Grebenyuk
    • 15
  • I. Gregor
    • 15
  • G. Grigorescu
    • 36
  • G. Grzelak
    • 53
  • O. Gueta
    • 45
  • M. Guzik
    • 13
  • C. Gwenlan
    • 38
  • T. Haas
    • 15
  • W. Hain
    • 15
  • R. Hamatsu
    • 48
  • J. C. Hart
    • 44
  • H. Hartmann
    • 5
  • G. Hartner
    • 57
  • E. Hilger
    • 5
  • D. Hochman
    • 55
  • R. Hori
    • 47
  • K. Horton
    • 38
  • A. Hüttmann
    • 15
  • Z. A. Ibrahim
    • 10
  • Y. Iga
    • 42
  • R. Ingbir
    • 45
  • M. Ishitsuka
    • 46
  • H.-P. Jakob
    • 5
  • F. Januschek
    • 15
  • T. W. Jones
    • 52
  • M. Jüngst
    • 5
  • I. Kadenko
    • 27
  • B. Kahle
    • 15
  • S. Kananov
    • 45
  • T. Kanno
    • 46
  • U. Karshon
    • 55
  • F. Karstens
    • 19
    • 73
  • I. I. Katkov
    • 15
    • 65
  • M. Kaur
    • 7
  • P. Kaur
    • 7
  • A. Keramidas
    • 36
  • L. A. Khein
    • 34
  • J. Y. Kim
    • 9
  • D. Kisielewska
    • 13
  • S. Kitamura
    • 48
    • 80
  • R. Klanner
    • 22
  • U. Klein
    • 15
    • 66
  • E. Koffeman
    • 36
  • P. Kooijman
    • 36
  • Ie. Korol
    • 26
    • 27
  • I. A. Korzhavina
    • 34
  • A. Kotanski
    • 14
  • U. Kötz
    • 15
  • H. Kowalski
    • 15
  • O. Kuprash
    • 15
  • M. Kuze
    • 46
  • A. Lee
    • 37
  • B. B. Levchenko
    • 34
  • A. Levy
    • 45
  • V. Libov
    • 15
  • S. Limentani
    • 40
  • T. Y. Ling
    • 37
  • M. Lisovyi
    • 15
  • E. Lobodzinska
    • 15
  • W. Lohmann
    • 16
  • B. Löhr
    • 15
  • E. Lohrmann
    • 22
  • K. R. Long
    • 23
  • A. Longhin
    • 39
  • D. Lontkovskyi
    • 15
  • O.Yu. Lukina
    • 34
  • J. Maeda
    • 46
    • 79
  • S. Magill
    • 1
  • I. Makarenko
    • 15
  • J. Malka
    • 15
  • R. Mankel
    • 15
  • A. Margotti
    • 3
  • G. Marini
    • 43
  • J. F. Martin
    • 51
  • A. Mastroberardino
    • 8
  • M. C. K. Mattingly
    • 2
  • I.-A. Melzer-Pellmann
    • 15
  • S. Mergelmeyer
    • 5
  • S. Miglioranzi
    • 15
    • 67
  • F. Mohamad Idris
    • 10
  • V. Monaco
    • 49
  • A. Montanari
    • 15
  • J. D. Morris
    • 6
    • 59
  • K. Mujkic
    • 15
    • 68
  • B. Musgrave
    • 1
  • K. Nagano
    • 24
  • T. Namsoo
    • 15
    • 69
  • R. Nania
    • 3
  • A. Nigro
    • 43
  • Y. Ning
    • 11
  • T. Nobe
    • 46
  • U. Noor
    • 57
  • D. Notz
    • 15
  • R. J. Nowak
    • 53
  • A. E. Nuncio-Quiroz
    • 5
  • B. Y. Oh
    • 41
  • N. Okazaki
    • 47
  • K. Oliver
    • 38
  • K. Olkiewicz
    • 12
  • Yu. Onishchuk
    • 27
  • K. Papageorgiu
    • 21
  • A. Parenti
    • 15
  • E. Paul
    • 5
  • J. M. Pawlak
    • 53
  • B. Pawlik
    • 12
  • P. G. Pelfer
    • 18
  • A. Pellegrino
    • 36
  • W. Perlanski
    • 53
  • H. Perrey
    • 15
  • K. Piotrzkowski
    • 29
  • P. Plucinski
    • 54
    • 83
  • N. S. Pokrovskiy
    • 25
  • A. Polini
    • 3
  • A. S. Proskuryakov
    • 34
  • M. Przybycien
    • 13
  • A. Raval
    • 15
  • D. D. Reeder
    • 56
  • B. Reisert
    • 35
  • Z. Ren
    • 11
  • J. Repond
    • 1
  • Y. D. Ri
    • 48
    • 81
  • A. Robertson
    • 38
  • P. Roloff
    • 15
    • 67
  • I. Rubinsky
    • 15
  • M. Ruspa
    • 50
  • R. Sacchi
    • 49
  • A. Salii
    • 27
  • U. Samson
    • 5
  • G. Sartorelli
    • 4
  • A. A. Savin
    • 56
  • D. H. Saxon
    • 20
  • M. Schioppa
    • 8
  • S. Schlenstedt
    • 16
  • P. Schleper
    • 22
  • W. B. Schmidke
    • 35
  • U. Schneekloth
    • 15
  • V. Schönberg
    • 5
  • T. Schörner-Sadenius
    • 15
  • J. Schwartz
    • 31
  • F. Sciulli
    • 11
  • L. M. Shcheglova
    • 34
  • R. Shehzadi
    • 5
  • S. Shimizu
    • 47
    • 67
  • I. Singh
    • 7
  • I. O. Skillicorn
    • 20
  • W. Slominski
    • 14
  • W. H. Smith
    • 56
  • V. Sola
    • 49
  • A. Solano
    • 49
  • D. Son
    • 28
  • V. Sosnovtsev
    • 33
  • A. Spiridonov
    • 15
    • 70
  • H. Stadie
    • 22
  • L. Stanco
    • 39
  • A. Stern
    • 45
  • T.P. Stewart
    • 51
  • A. Stifutkin
    • 33
  • P. Stopa
    • 12
  • S. Suchkov
    • 33
  • G. Susinno
    • 8
  • L. Suszycki
    • 13
  • J. Sztuk-Dambietz
    • 22
  • D. Szuba
    • 22
  • J. Szuba
    • 15
    • 71
  • A. D. Tapper
    • 23
  • E. Tassi
    • 8
    • 60
  • J. Terrón
    • 30
  • T. Theedt
    • 15
  • H. Tiecke
    • 36
  • K. Tokushuku
    • 24
    • 77
  • O. Tomalak
    • 27
  • J. Tomaszewska
    • 15
  • T. Tsurugai
    • 32
  • M. Turcato
    • 22
  • T. Tymieniecka
    • 54
    • 84
  • M. Vázquez
    • 36
    • 67
  • A. Verbytskyi
    • 15
  • O. Viazlo
    • 26
    • 27
  • N. N. Vlasov
    • 19
    • 74
  • O. Volynets
    • 27
  • R. Walczak
    • 38
  • W. A. T. Wan Abdullah
    • 10
  • J. J. Whitmore
    • 41
  • L. Wiggers
    • 36
  • M. Wing
    • 52
  • M. Wlasenko
    • 5
  • G. Wolf
    • 15
  • H. Wolfe
    • 56
  • K. Wrona
    • 15
  • A. G. Yagües-Molina
    • 15
  • S. Yamada
    • 24
  • Y. Yamazaki
    • 24
    • 78
  • R. Yoshida
    • 1
  • C. Youngman
    • 15
  • A. F. Żarnecki
    • 53
  • L. Zawiejski
    • 12
  • O. Zenaiev
    • 15
  • W. Zeuner
    • 15
    • 67
  • B. O. Zhautykov
    • 25
  • N. Zhmak
    • 26
  • C. Zhou
    • 31
  • A. Zichichi
    • 4
  • Z. Zolkapli
    • 10
  • M. Zolko
    • 27
  • D. S. Zotkin
    • 34
  1. 1.Argonne National LaboratoryArgonneU.S.A
  2. 2.Andrews University, Berrien SpringsMichiganU.S.A
  3. 3.INFN BolognaBolognaItaly
  4. 4.University and INFN BolognaBolognaItaly
  5. 5.Physikalisches Institut der Universität BonnBonnGermany
  6. 6.H.H. Wills Physics LaboratoryUniversity of BristolBristolU.K
  7. 7.Department of PhysicsPanjab UniversityChandigarhIndia
  8. 8.Physics Department and INFNCalabria UniversityCosenzaItaly
  9. 9.Institute for Universe and Elementary ParticlesChonnam National UniversityKwangjuSouth Korea
  10. 10.Jabatan Fizik, Universiti MalayaKuala LumpurMalaysia
  11. 11.Nevis Laboratories, Columbia UniversityIrvington on HudsonNew YorkU.S.A
  12. 12.The Henryk Niewodniczanski Institute of Nuclear PhysicsPolish Academy of SciencesKrakowPoland
  13. 13.AGH-University of Science and Technology, Faculty of Physics and Applied Computer ScienceKrakowPoland
  14. 14.Department of PhysicsJagellonian UniversityCracowPoland
  15. 15.Deutsches Elektronen-Synchrotron DESYHamburgGermany
  16. 16.Deutsches Elektronen-Synchrotron DESYZeuthenGermany
  17. 17.INFN FlorenceFlorenceItaly
  18. 18.University and INFN FlorenceFlorenceItaly
  19. 19.Fakultät für Physik der Universität Freiburg i.BrFreiburg i.BrGermany
  20. 20.School of Physics and AstronomyUniversity of GlasgowGlasgowU.K
  21. 21.Department of Engineering in Management and FinanceUniv. of the AegeanChiosGreece
  22. 22.Hamburg University, Institute of Experimental PhysicsHamburgGermany
  23. 23.Imperial College LondonHigh Energy Nuclear Physics GroupLondonU.K
  24. 24.Institute of Particle and Nuclear StudiesTsukubaJapan
  25. 25.Institute of Physics and Technology of Ministry of Education and Science of KazakhstanAlmatyKazakhstan
  26. 26.Institute for Nuclear Research, National Academy of SciencesKyivUkraine
  27. 27.Department of Nuclear PhysicsNational Taras Shevchenko University of KyivKyivUkraine
  28. 28.Kyungpook National University, Center for High Energy PhysicsDaeguSouth Korea
  29. 29.Institut de Physique Nucléaire, Université Catholique de LouvainLouvain-la-NeuveBelgium
  30. 30.Departamento de F´ısica TeóricaUniversidad Autónoma de MadridMadridSpain
  31. 31.Department of PhysicsMcGill UniversityMontréalCanada
  32. 32.Meiji Gakuin University, Faculty of General EducationYokohamaJapan
  33. 33.Moscow Engineering Physics InstituteMoscowRussia
  34. 34.Moscow State University, Institute of Nuclear PhysicsMoscowRussia
  35. 35.Max-Planck-Institut für PhysikMünchenGermany
  36. 36.NIKHEF and University of AmsterdamAmsterdamNetherlands
  37. 37.Physics DepartmentOhio State UniversityColumbusU.S.A
  38. 38.Department of PhysicsUniversity of OxfordOxfordU.K
  39. 39.INFN PadovaPadovaItaly
  40. 40.Dipartimento di Fisica dell’ Università and INFNPadovaItaly
  41. 41.Department of PhysicsPennsylvania State UniversityUniversity ParkU.S.A
  42. 42.Polytechnic UniversitySagamiharaJapan
  43. 43.Dipartimento di FisicaUniversità ’La Sapienza’ and INFNRomeItaly
  44. 44.Rutherford Appleton Laboratory, Chilton, DidcotOxonU.K
  45. 45.Raymond and Beverly Sackler Faculty of Exact Sciences, School of PhysicsTel Aviv UniversityTel AvivIsrael
  46. 46.Department of PhysicsTokyo Institute of TechnologyTokyoJapan
  47. 47.Department of PhysicsUniversity of TokyoTokyoJapan
  48. 48.Department of PhysicsTokyo Metropolitan UniversityTokyoJapan
  49. 49.Università di Torino and INFNTorinoItaly
  50. 50.Università del Piemonte Orientale, Novara, and INFNTorinoItaly
  51. 51.Department of PhysicsUniversity of TorontoTorontoCanada
  52. 52.Physics and Astronomy DepartmentUniversity College LondonLondonU.K
  53. 53.Faculty of PhysicsUniversity of WarsawWarsawPoland
  54. 54.National Centre for Nuclear ResearchWarsawPoland
  55. 55.Department of Particle Physics and AstrophysicsWeizmann InstituteRehovotIsrael
  56. 56.Department of PhysicsUniversity of WisconsinMadisonU.S.A
  57. 57.Department of PhysicsYork UniversityYorkCanada
  58. 58.University of SalernoSalernoItaly
  59. 59.Queen Mary University of LondonLondonU.K
  60. 60.Senior Alexander von Humboldt Research Fellow at Hamburg University, Institute of Experimental PhysicsHamburgGermany
  61. 61.Cracow University of Technology, Faculty of Physics, Mathemathics and Applied Computer ScienceCracowPoland
  62. 62.Rockefeller UniversityNew YorkU.S.A
  63. 63.Institute of High Energy PhysicsBeijingChina
  64. 64.DESY group FEBHamburgGermany
  65. 65.Moscow State UniversityMoscowRussia
  66. 66.University of LiverpoolLiverpoolU.K
  67. 67.CERNGenevaSwitzerland
  68. 68.Universtiy College LondonLondonUK
  69. 69.Goldman SachsLondonUK
  70. 70.Institute of Theoretical and Experimental PhysicsMoscowRussia
  71. 71.FPACS, AGH-USTCracowPoland
  72. 72.Istituto Nucleare di Fisica Nazionale (INFN)PisaItaly
  73. 73.Haase Energie Technik AGNeumünsterGermany
  74. 74.Department of PhysicsUniversity of BonnBonnGermany
  75. 75.Biodiversität und Klimaforschungszentrum (BiK-F)FrankfurtGermany
  76. 76.DESYHarburgGermany
  77. 77.University of TokyoTokyoJapan
  78. 78.Kobe UniversityKobeJapan
  79. 79.Tokyo Metropolitan UniversityTokyoJapan
  80. 80.Nihon Institute of Medical ScienceNihonJapan
  81. 81.Osaka UniversityOsakaJapan
  82. 82.Lódz UniversityLódzPoland
  83. 83.Department of PhysicsStockholm UniversityStockholmSweden
  84. 84.Cardinal Stefan Wyszynski UniversityWarsawPoland

Personalised recommendations