Skip to main content
Log in

Gauge invariant Ansatz for a special three-gluon vertex

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We construct a general Ansatz for the three-particle vertex describing the interaction of one background and two quantum gluons, by simultaneously solving the Ward and Slavnov-Taylor identities it satisfies. This vertex is known to be essential for the gauge-invariant truncation of the Schwinger-Dyson equations of QCD, based on the pinch technique and the background field method. A key step in this construction is the formal derivation of a set of crucial constraints (shown to be valid to all orders), relating the various form factors of the ghost Green’s functions appearing in the aforementioned Slavnov-Taylor identity. When inserted into the Schwinger-Dyson equation for the gluon propagator, this vertex gives rise to a number of highly non-trivial cancellations, which are absolutely indispensable for the self-consistency of the entire approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Cucchieri and T. Mendes, What’s up with IR gluon and ghost propagators in Landau gauge? A puzzling answer from huge lattices, PoS(LATTICE 2007)297 [arXiv:0710.0412] [SPIRES].

  2. A. Cucchieri and T. Mendes, Constraints on the IR behavior of the gluon propagator in Yang-Mills theories, Phys. Rev. Lett. 100 (2008) 241601 [arXiv:0712.3517] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  3. A. Cucchieri and T. Mendes, Landau-gauge propagators in Yang-Mills theories at β = 0: massive solution versus conformal scaling, Phys. Rev. D 81 (2010) 016005 [arXiv:0904.4033] [SPIRES].

    ADS  Google Scholar 

  4. A. Cucchieri and T. Mendes, Further investigation of massive Landau-gauge propagators in the infrared limit, PoS(Lattice 2010)280 [arXiv:1101.4537] [SPIRES].

  5. A. Cucchieri and T. Mendes, The saga of Landau-gauge propagators: gathering new ammo, arXiv:1101.4779 [SPIRES].

  6. I.L. Bogolubsky, E.M. Ilgenfritz, M. Muller-Preussker and A. Sternbeck, The Landau gauge gluon and ghost propagators in 4D SU(3) gluodynamics in large lattice volumes, PoS(LATTICE 2007)290 [arXiv:0710.1968] [SPIRES].

  7. P.O. Bowman et al., Scaling behavior and positivity violation of the gluon propagator in full QCD, Phys. Rev. D 76 (2007) 094505 [hep-lat/0703022] [SPIRES].

    ADS  Google Scholar 

  8. I.L. Bogolubsky, E.M. Ilgenfritz, M. Muller-Preussker and A. Sternbeck, Lattice gluodynamics computation of Landau gauge Green’s functions in the deep infrared, Phys. Lett. B 676 (2009) 69 [arXiv:0901.0736] [SPIRES].

    ADS  Google Scholar 

  9. O. Oliveira and P.J. Silva, The lattice infrared Landau gauge gluon propagator: the infinite volume limit, PoS(LAT2009)226 [arXiv:0910.2897] [SPIRES].

  10. A.C. Aguilar and J. Papavassiliou, Gluon mass generation in the PT-BFM scheme, JHEP 12 (2006) 012 [hep-ph/0610040] [SPIRES].

    Article  ADS  Google Scholar 

  11. D. Binosi and J. Papavassiliou, Gauge-invariant truncation scheme for the Schwinger-Dyson equations of QCD, Phys. Rev. D 77 (2008) 061702 [arXiv:0712.2707] [SPIRES].

    ADS  Google Scholar 

  12. D. Binosi and J. Papavassiliou, New Schwinger-Dyson equations for non-Abelian gauge theories, JHEP 11 (2008) 063 [arXiv:0805.3994] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  13. J.M. Cornwall, Dynamical mass generation in continuum QCD, Phys. Rev. D 26 (1982) 1453 [SPIRES].

    ADS  Google Scholar 

  14. J.M. Cornwall and J. Papavassiliou, Gauge invariant three gluon vertex in QCD, Phys. Rev. D 40 (1989) 3474 [SPIRES].

    ADS  Google Scholar 

  15. D. Binosi and J. Papavassiliou, The pinch technique to all orders, Phys. Rev. D 66 (2002) 111901 [hep-ph/0208189] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  16. D. Binosi and J. Papavassiliou, Pinch technique self-energies and vertices to all orders in perturbation theory, J. Phys. G 30 (2004) 203 [hep-ph/0301096] [SPIRES].

    ADS  Google Scholar 

  17. D. Binosi and J. Papavassiliou, Pinch technique: theory and applications, Phys. Rept. 479 (2009) 1 [arXiv:0909.2536] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  18. L.F. Abbott, The background field method beyond one loop, Nucl. Phys. B 185 (1981) 189 [SPIRES].

    Article  ADS  Google Scholar 

  19. R. Alkofer and L. von Smekal, The infrared behavior of QCD Green’s functions: confinement, dynamical symmetry breaking and hadrons as relativistic bound states, Phys. Rept. 353 (2001) 281 [hep-ph/0007355] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  20. C.S. Fischer, Infrared properties of QCD from Dyson-Schwinger equations, J. Phys. G 32 (2006) R253 [hep-ph/0605173] [SPIRES].

    ADS  Google Scholar 

  21. D. Dudal, J.A. Gracey, S.P. Sorella, N. Vandersickel and H. Verschelde, A refinement of the Gribov-Zwanziger approach in the Landau gauge: infrared propagators in harmony with the lattice results, Phys. Rev. D 78 (2008) 065047 [arXiv:0806.4348] [SPIRES].

    ADS  Google Scholar 

  22. P. Boucaud et al., IR finiteness of the ghost dressing function from numerical resolution of the ghost SD equation, JHEP 06 (2008) 012 [arXiv:0801.2721] [SPIRES].

    Article  ADS  Google Scholar 

  23. J. Braun, H. Gies and J.M. Pawlowski, Quark confinement from color confinement, Phys. Lett. B 684 (2010) 262 [arXiv:0708.2413] [SPIRES].

    ADS  Google Scholar 

  24. A.P. Szczepaniak and H.H. Matevosyan, A model for QCD ground state with magnetic disorder, Phys. Rev. D 81 (2010) 094007 [arXiv:1003.1901] [SPIRES].

    ADS  Google Scholar 

  25. J. Rodriguez-Quintero, The low-momentum ghost dressing function and the gluon mass, PoS(LC2010)023 [arXiv:1011.1392] [SPIRES].

  26. J. Rodriguez-Quintero, The scaling infrared DSE solution as a critical end-point for the family of decoupling ones, arXiv:1012.0448 [SPIRES].

  27. A.C. Aguilar and J. Papavassiliou, Gluon mass generation without seagull divergences, Phys. Rev. D 81 (2010) 034003 [arXiv:0910.4142] [SPIRES].

    ADS  Google Scholar 

  28. A. Salam, Renormalizable electrodynamics of vector mesons, Phys. Rev. 130 (1963) 1287 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  29. A. Salam and R. Delbourgo, Renormalizable electrodynamics of scalar and vector mesons. II, Phys. Rev. 135 (1964) B1398 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  30. R. Delbourgo and P.C. West, A gauge covariant approximation to quantum electrodynamics, J. Phys. A 10 (1977) 1049 [SPIRES].

    ADS  Google Scholar 

  31. R. Delbourgo and P.C. West, Infrared behavior of a gauge covariant approximation, Phys. Lett. B 72 (1977) 96 [SPIRES].

    ADS  Google Scholar 

  32. J.S. Ball and T.-W. Chiu, Analytic properties of the vertex function in gauge theories. 2, Phys. Rev. D 22 (1980) 2550 [Erratum ibid. D 23 (1981) 3085] [SPIRES].

    ADS  Google Scholar 

  33. A.I. Davydychev, P. Osland and O.V. Tarasov, Three-gluon vertex in arbitrary gauge and dimension, Phys. Rev. D 54 (1996) 4087 [Erratum ibid. D 59 (1999) 109901] [hep-ph/9605348] [SPIRES].

    ADS  Google Scholar 

  34. A. Pilaftsis, Generalized pinch technique and the background field method in general gauges, Nucl. Phys. B 487 (1997) 467 [hep-ph/9607451] [SPIRES].

    Article  ADS  Google Scholar 

  35. J.S. Schwinger, Gauge invariance and mass, Phys. Rev. 125 (1962) 397 [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. J.S. Schwinger, Gauge invariance and mass. 2, Phys. Rev. 128 (1962) 2425 [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. R. Jackiw and K. Johnson, Dynamical model of spontaneously broken gauge symmetries, Phys. Rev. D 8 (1973) 2386 [SPIRES].

    ADS  Google Scholar 

  38. J.M. Cornwall and R.E. Norton, Spontaneous symmetry breaking without scalar mesons, Phys. Rev. D 8 (1973) 3338 [SPIRES].

    ADS  Google Scholar 

  39. E. Eichten and F. Feinberg, Dynamical symmetry breaking of nonabelian gauge symmetries, Phys. Rev. D 10 (1974) 3254 [SPIRES].

    ADS  Google Scholar 

  40. J.S. Ball and T.-W. Chiu, Analytic properties of the vertex function in gauge theories. 1, Phys. Rev. D 22 (1980) 2542 [SPIRES].

    ADS  Google Scholar 

  41. A.C. Aguilar, D. Binosi and J. Papavassiliou, Gluon and ghost propagators in the Landau gauge: deriving lattice results from Schwinger-Dyson equations, Phys. Rev. D 78 (2008) 025010 [arXiv:0802.1870] [SPIRES].

    ADS  Google Scholar 

  42. P.A. Grassi, T. Hurth and M. Steinhauser, Practical algebraic renormalization, Annals Phys. 288 (2001) 197 [hep-ph/9907426] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. D. Binosi and J. Papavassiliou, Pinch technique and the Batalin-Vilkovisky formalism, Phys. Rev. D 66 (2002) 025024 [hep-ph/0204128] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  44. I.A. Batalin and G.A. Vilkovisky, Relativistic S matrix of dynamical systems with boson and fermion constraints, Phys. Lett. B 69 (1977) 309 [SPIRES].

    ADS  Google Scholar 

  45. I.A. Batalin and G.A. Vilkovisky, Gauge algebra and quantization, Phys. Lett. B 102 (1981) 27 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  46. M. Binger and S.J. Brodsky, The form factors of the gauge-invariant three-gluon vertex, Phys. Rev. D 74 (2006) 054016 [hep-ph/0602199] [SPIRES].

    ADS  Google Scholar 

  47. A.C. Aguilar and J. Papavassiliou, Chiral symmetry breaking with lattice propagators, Phys. Rev. D 83 (2011) 014013 [arXiv:1010.5815] [SPIRES].

    ADS  Google Scholar 

  48. A. Cucchieri, T. Mendes and E.M.S. Santos, Covariant gauge on the lattice: a new implementation, Phys. Rev. Lett. 103 (2009) 141602 [arXiv:0907.4138] [SPIRES].

    Article  ADS  Google Scholar 

  49. A. Cucchieri, T. Mendes, G.M. Nakamura and E.M.S. Santos, Feynman gauge on the lattice: new results and perspectives, arXiv:1101.5080 [SPIRES].

  50. J.E. King, The transverse vertex and gauge technique in quantum electrodynamics, Phys. Rev. D 27 (1983) 1821 [SPIRES].

    ADS  Google Scholar 

  51. D.C. Curtis and M.R. Pennington, Truncating the Schwinger-Dyson equations: how multiplicative renormalizability and the Ward identity restrict the three point vertex in QED, Phys. Rev. D 42 (1990) 4165 [SPIRES].

    ADS  Google Scholar 

  52. A. Kizilersu and M.R. Pennington, Building the full fermion-photon vertex of QED by imposing multiplicative renormalizability of the Schwinger-Dyson equations for the fermion and photon propagators, Phys. Rev. D 79 (2009) 125020 [arXiv:0904.3483] [SPIRES].

    ADS  Google Scholar 

  53. A. Bashir, A. Kizilersu and M.R. Pennington, The non-perturbative three-point vertex in massless quenched QED and perturbation theory constraints, Phys. Rev. D 57 (1998) 1242 [hep-ph/9707421] [SPIRES].

    ADS  Google Scholar 

  54. B. Haeri Jr., The ultraviolet improved gauge technique and the effective quark propagator in QCD, Phys. Rev. D 38 (1988) 3799 [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Binosi.

Additional information

ArXiv ePrint: 1102.5662

Rights and permissions

Reprints and permissions

About this article

Cite this article

Binosi, D., Papavassiliou, J. Gauge invariant Ansatz for a special three-gluon vertex. J. High Energ. Phys. 2011, 121 (2011). https://doi.org/10.1007/JHEP03(2011)121

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2011)121

Keywords

Navigation