Skip to main content
Log in

Conifolds and tunneling in the string landscape

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We investigate flux vacua on a variety of one-parameter Calabi-Yau compactifications, and find many examples that are connected through continuous monodromy transformations. For these, we undertake a detailed analysis of the tunneling dynamics and find that tunneling trajectories typically graze the conifold point — particular 3-cycles are forced to contract during such vacuum transitions. Physically, these transitions arise from the competing effects of minimizing the energy for brane nucleation (facilitating a change in flux), versus the energy cost associated with dynamical changes in the periods of certain Calabi-Yau 3-cycles. We find that tunneling occurs only when warping due to back-reaction from the flux through the shrinking cycle is properly taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Susskind, The anthropic landscape of string theory, hep-th/0302219 [SPIRES].

  2. R. Bousso and J. Polchinski, Quantization of four-form fluxes and dynamical neutralization of the cosmological constant, JHEP 06 (2000) 006 [hep-th/0004134] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  3. A.D. Linde, V. Vanchurin and S. Winitzki, Stationary measure in the multiverse, JCAP 01 (2009) 031 [arXiv:0812.0005] [SPIRES].

    ADS  Google Scholar 

  4. A. De Simone et al., Boltzmann brains and the scale-factor cutoff measure of the multiverse, Phys. Rev. D 82 (2010) 063520 [arXiv:0808.3778] [SPIRES].

    ADS  Google Scholar 

  5. J. Garriga, A.H. Guth and A. Vilenkin, Eternal inflation, bubble collisions and the persistence of memory, Phys. Rev. D 76 (2007) 123512 [hep-th/0612242] [SPIRES].

    ADS  Google Scholar 

  6. J. Garriga, D. Schwartz-Perlov, A. Vilenkin and S. Winitzki, Probabilities in the inflationary multiverse, JCAP 01 (2006) 017 [hep-th/0509184] [SPIRES].

    ADS  Google Scholar 

  7. R. Bousso, B. Freivogel and I.-S. Yang, Eternal inflation: The inside story, Phys. Rev. D 74 (2006) 103516 [hep-th/0606114] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  8. R. Easther, E.A. Lim and M.R. Martin, Counting pockets with world lines in eternal inflation, JCAP 03 (2006) 016 [astro-ph/0511233] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  9. A.R. Brown, S. Sarangi, B. Shlaer and A. Weltman, A wrinkle in Coleman-De Luccia, Phys. Rev. Lett. 99 (2007) 161601 [arXiv:0706.0485] [SPIRES].

    Article  ADS  Google Scholar 

  10. J.J. Blanco-Pillado, D. Schwartz-Perlov and A. Vilenkin, Quantum tunneling in flux compactifications, JCAP 12 (2009) 006 [arXiv:0904.3106] [SPIRES].

    ADS  Google Scholar 

  11. H. Davoudiasl, S. Sarangi and G. Shiu, Vacuum sampling in the landscape during inflation, Phys. Rev. Lett. 99 (2007) 161302 [hep-th/0611232] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  12. S. Sarangi, G. Shiu and B. Shlaer, Rapid tunneling and percolation in the landscape, Int. J. Mod. Phys. A 24 (2009) 741 [arXiv:0708.4375] [SPIRES].

    ADS  Google Scholar 

  13. S. Sarangi, DBI global strings, JHEP 07 (2008) 018 [arXiv:0710.0421] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  14. S.H. Henry Tye, A new view of the cosmic landscape, hep-th/0611148 [SPIRES].

  15. S.H.H. Tye and D. Wohns, Resonant tunneling in scalar quantum field theory, arXiv:0910.1088 [SPIRES].

  16. A. Aguirre, M.C. Johnson and M. Larfors, Runaway dilatonic domain walls, Phys. Rev. D 81 (2010) 043527 [arXiv:0911.4342] [SPIRES].

    ADS  Google Scholar 

  17. I.-S. Yang, Stretched extra dimensions and bubbles of nothing in a toy model landscape, Phys. Rev. D 81 (2010) 125020 [arXiv:0910.1397] [SPIRES].

    ADS  Google Scholar 

  18. A.R. Brown and A. Dahlen, Small steps and giant leaps in the landscape, Phys. Rev. D 82 (2010) 083519 [arXiv:1004.3994] [SPIRES].

    ADS  Google Scholar 

  19. U.H. Danielsson, N. Johansson and M. Larfors, The world next door: Results in landscape topography, JHEP 03 (2007) 080 [hep-th/0612222] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  20. B.R. Greene and M.R. Plesser, Duality in Calabi-Yau moduli space, Nucl. Phys. B 338 (1990) 15 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  21. M.C. Johnson and M. Larfors, Field dynamics and tunneling in a flux landscape, Phys. Rev. D 78 (2008) 083534 [arXiv:0805.3705] [SPIRES].

    ADS  Google Scholar 

  22. B.R. Greene and C.I. Lazaroiu, Collapsing D-branes in Calabi-Yau moduli space. I, Nucl. Phys. B 604 (2001) 181 [hep-th/0001025] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  23. S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  24. S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, De Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  25. V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  26. C.F. Doran and J.W. Morgan, Mirror symmetry and integral variations of Hodge structure underlying one-parameter families of Calabi-Yau threefolds, math/0505272.

  27. A. Giryavets, S. Kachru and P.K. Tripathy, On the taxonomy of flux vacua, JHEP 08 (2004) 002 [hep-th/0404243] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  28. J.P. Conlon and F. Quevedo, On the explicit construction and statistics of Calabi-Yau flux vacua, JHEP 10 (2004) 039 [hep-th/0409215] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  29. M.R. Douglas, The statistics of string/M theory vacua, JHEP 05 (2003) 046 [hep-th/0303194] [SPIRES].

    Article  ADS  Google Scholar 

  30. S. Ashok and M.R. Douglas, Counting flux vacua, JHEP 01 (2004) 060 [hep-th/0307049] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  31. C.I. Lazaroiu, Collapsing D-branes in one-parameter models and small/large radius duality, Nucl. Phys. B 605 (2001) 159 [hep-th/0002004] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  32. S.R. Coleman and F. De Luccia, Gravitational effects on and of vacuum decay, Phys. Rev. D 21 (1980) 3305 [SPIRES].

    ADS  Google Scholar 

  33. J.T. Giblin, Jr, L. Hui, E.A. Lim and I.-S. Yang, How to run through walls: dynamics of bubble and soliton collisions, Phys. Rev. D 82 (2010) 045019 [arXiv:1005.3493] [SPIRES].

    ADS  Google Scholar 

  34. R. Easther, J.T. Giblin, Jr, L. Hui and E.A. Lim, A new mechanism for bubble nucleation: classical transitions, Phys. Rev. D 80 (2009) 123519 [arXiv:0907.3234] [SPIRES].

    ADS  Google Scholar 

  35. G. Torroba, Finiteness of flux vacua, Nucl. Phys. Proc. Suppl. 171 (2007) 322 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  36. A. Ceresole, G. Dall’Agata, A. Giryavets, R. Kallosh and A.D. Linde, Domain walls, near-BPS bubbles and probabilities in the landscape, Phys. Rev. D 74 (2006) 086010 [hep-th/0605266] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  37. D. Arean, D.E. Crooks and A.V. Ramallo, Supersymmetric probes on the conifold, JHEP 11 (2004) 035 [hep-th/0408210] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  38. A. Giryavets, S. Kachru, P.K. Tripathy and S.P. Trivedi, Flux compactifications on Calabi-Yau threefolds, JHEP 04 (2004) 003 [hep-th/0312104] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  39. O. DeWolfe, A. Giryavets, S. Kachru and W. Taylor, Enumerating flux vacua with enhanced symmetries, JHEP 02 (2005) 037 [hep-th/0411061] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  40. S.B. Giddings and A. Maharana, Dynamics of warped compactifications and the shape of the warped landscape, Phys. Rev. D 73 (2006) 126003 [hep-th/0507158] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  41. G. Shiu, G. Torroba, B. Underwood and M.R. Douglas, Dynamics of warped flux compactifications, JHEP 06 (2008) 024 [arXiv:0803.3068] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  42. M.R. Douglas and G. Torroba, Kinetic terms in warped compactifications, JHEP 05 (2009) 013 [arXiv:0805.3700] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  43. L. Martucci, On moduli and effective theory of N = 1 warped flux compactifications, JHEP 05 (2009) 027 [arXiv:0902.4031] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  44. H.-Y. Chen, Y. Nakayama and G. Shiu, On D3-brane dynamics at strong warping, Int. J. Mod. Phys. A 25 (2010) 2493 [arXiv:0905.4463] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  45. M.R. Douglas, J. Shelton and G. Torroba, Warping and supersymmetry breaking, arXiv:0704.4001 [SPIRES].

  46. A.R. Frey, G. Torroba, B. Underwood and M.R. Douglas, The universal Kähler modulus in warped compactifications, JHEP 01 (2009) 036 [arXiv:0810.5768] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  47. S.W. Hawking and I.G. Moss, Bubble collisions in the very early universe, Phys. Lett. B 110 (1982) 35 [SPIRES].

    ADS  Google Scholar 

  48. J.C. Hackworth and E.J. Weinberg, Oscillating bounce solutions and vacuum tunneling in de Sitter spacetime, Phys. Rev. D 71 (2005) 044014 [hep-th/0410142] [SPIRES].

    ADS  Google Scholar 

  49. I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: duality cascades and χ SB -resolution of naked singularities, JHEP 08 (2000) 052 [hep-th/0007191] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  50. P. Candelas, X.C. De La Ossa, P.S. Green and L. Parkes, A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nucl. Phys. B 359 (1991) 21 [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Kagan.

Additional information

ArXiv ePrint: 1011.6588

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahlqvist, P., Greene, B.R., Kagan, D. et al. Conifolds and tunneling in the string landscape. J. High Energ. Phys. 2011, 119 (2011). https://doi.org/10.1007/JHEP03(2011)119

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2011)119

Keywords

Navigation