Skip to main content
Log in

Spontaneous breaking of SU(3) to finite family symmetries — a pedestrian’s approach

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Non-Abelian discrete family symmetries play a pivotal role in the formulation of models with tri-bimaximal lepton mixing. We discuss how to obtain symmetries such as \( {\mathcal{A}_4} \), \( {\mathcal{Z}_7} \)\( {\mathcal{Z}_3} \) and Δ(27) from an underlying SU(3) gauge symmetry. Higher irreducible representations are required to achieve the spontaneous breaking of the continuous group. We present methods of identifying the required vacuum alignments and discuss in detail the symmetry breaking potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Schwetz, M.A. Tortola and J.W.F. Valle, Three-flavour neutrino oscillation update, New J. Phys. 10 (2008) 113011 [arXiv:0808.2016] [SPIRES].

    Article  ADS  Google Scholar 

  2. M.C. Gonzalez-Garcia, M. Maltoni and J. Salvado, Updated global fit to three neutrino mixing: status of the hints of θ 13 > 0, JHEP 04 (2010) 056 [arXiv:1001.4524] [SPIRES].

    Article  ADS  Google Scholar 

  3. P.F. Harrison, D.H. Perkins and W.G. Scott, Tri-bimaximal mixing and the neutrino oscillation data, Phys. Lett. B 530 (2002) 167 [hep-ph/0202074] [SPIRES].

    ADS  Google Scholar 

  4. P.F. Harrison and W.G. Scott, Symmetries and generalisations of tri-bimaximal neutrino mixing, Phys. Lett. B 535 (2002) 163 [hep-ph/0203209] [SPIRES].

    ADS  Google Scholar 

  5. E. Ma and G. Rajasekaran, Softly broken A 4 symmetry for nearly degenerate neutrino masses, Phys. Rev. D 64 (2001) 113012 [hep-ph/0106291] [SPIRES].

    ADS  Google Scholar 

  6. E. Ma, Neutrino mass matrix from S 4 symmetry, Phys. Lett. B 632 (2006) 352 [hep-ph/0508231] [SPIRES].

    ADS  Google Scholar 

  7. I. de Medeiros Varzielas, S.F. King and G.G. Ross, Neutrino tri-bi-maximal mixing from a non-Abelian discrete family symmetry, Phys. Lett. B 648 (2007) 201 [hep-ph/0607045] [SPIRES].

    ADS  Google Scholar 

  8. D.B. Kaplan and M. Schmaltz, Flavor unification and discrete non-Abelian symmetries, Phys. Rev. D 49 (1994) 3741 [hep-ph/9311281] [SPIRES].

    ADS  Google Scholar 

  9. M. Schmaltz, Neutrino oscillations from discrete non-Abelian family symmetries, Phys. Rev. D 52 (1995) 1643 [hep-ph/9411383] [SPIRES].

    ADS  Google Scholar 

  10. S.F. King and C. Luhn, On the origin of neutrino flavour symmetry, JHEP 10 (2009) 093 [arXiv:0908.1897] [SPIRES].

    Article  ADS  Google Scholar 

  11. G. Altarelli and F. Feruglio, Discrete flavor symmetries and models of neutrino mixing, Rev. Mod. Phys. 82 (2010) 2701 [arXiv:1002.0211] [SPIRES].

    Article  ADS  Google Scholar 

  12. L.M. Krauss and F. Wilczek, Discrete gauge symmetry in continuum theories, Phys. Rev. Lett. 62 (1989) 1221 [SPIRES].

    Article  ADS  Google Scholar 

  13. S.F. King and G.G. Ross, Fermion masses and mixing angles from SU(3) family symmetry, Phys. Lett. B 520 (2001) 243 [hep-ph/0108112] [SPIRES].

    ADS  Google Scholar 

  14. L.E. Ibáñez and G.G. Ross, Discrete gauge symmetry anomalies, Phys. Lett. B 260 (1991) 291 [SPIRES].

    ADS  Google Scholar 

  15. L.E. Ibáñez and G.G. Ross, Discrete gauge symmetries and the origin of baryon and lepton number conservation in supersymmetric versions of the standard model, Nucl. Phys. B 368 (1992) 3 [SPIRES].

    Article  ADS  Google Scholar 

  16. H.K. Dreiner, C. Luhn and M. Thormeier, What is the discrete gauge symmetry of the MSSM?, Phys. Rev. D 73 (2006) 075007 [hep-ph/0512163] [SPIRES].

    ADS  Google Scholar 

  17. C. Luhn and M. Thormeier, Dirac neutrinos and anomaly-free discrete gauge symmetries, Phys. Rev. D 77 (2008) 056002 [arXiv:0711.0756] [SPIRES].

    ADS  Google Scholar 

  18. B.A. Ovrut, Isotropy subgroups of SO(3) and Higgs potentials, J. Math. Phys. 19 (1978) 418 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  19. G. Etesi, Spontaneous symmetry breaking in SO(3) gauge theory to discrete subgroups, J. Math. Phys. 37 (1996) 1596 [hep-th/9706029] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. M. Koca, M. Al-Barwani and R. Koc, Breaking SO(3) into its closed subgroups by Higgs mechanism, J. Phys. A 30 (1997) 2109 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  21. M. Koca, R. Koc and H. Tutunculer, Explicit breaking of SO(3) with Higgs fields in the representations L = 2 and L = 3, Int. J. Mod. Phys. A 18 (2003) 4817 [hep-ph/0410270] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  22. J. Berger and Y. Grossman, Model of leptons from SO(3) → A 4, JHEP 02 (2010) 071 [arXiv:0910.4392] [SPIRES].

    Article  ADS  Google Scholar 

  23. A. Adulpravitchai, A. Blum and M. Lindner, Non-Abelian discrete groups from the breaking of continuous flavor symmetries, JHEP 09 (2009) 018 [arXiv:0907.2332] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  24. C. Luhn and P. Ramond, Anomaly conditions for non-Abelian finite family symmetries, JHEP 07 (2008) 085 [arXiv:0805.1736] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  25. G.A. Miller, H.F. Blichfeldt, and L.E. Dickson, Theory and application of finite groups, John Wiley & Sons, New York U.S.A. (1916) [Dover edition (1961)].

    Google Scholar 

  26. W.M. Fairbairn, T. Fulton, W. H. Klink, Finite and disconnected subgroups of SU(3) and their application to the elementary-particle spectrum, J. Math. Phys. 5 (1964) 1038.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. A. Bovier, M. L¨uling and D. Wyler, Finite subgroups of SU(3), J. Math. Phys. 22 (1981) 1543 [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. C. Luhn, S. Nasri and P. Ramond, The flavor group Δ(3n 2), J. Math. Phys. 48 (2007) 073501 [hep-th/0701188] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  29. C. Luhn, S. Nasri and P. Ramond, Simple finite non-Abelian flavor groups, J. Math. Phys. 48 (2007) 123519 [arXiv:0709.1447] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  30. J.A. Escobar and C. Luhn, The flavor group Δ(6n 2), J. Math. Phys. 50 (2009) 013524 [arXiv:0809.0639] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  31. P.O. Ludl, Systematic analysis of finite family symmetry groups and their application to the lepton sector, arXiv:0907.5587 [SPIRES].

  32. H. Ishimori et al., Non-Abelian discrete symmetries in particle physics, Prog. Theor. Phys. Suppl. 183 (2010) 1 [arXiv:1003.3552] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  33. W. Grimus and P.O. Ludl, Principal series of finite subgroups of SU(3), J. Phys. A 43 (2010) 445209 [arXiv:1006.0098] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  34. P. Ramond, Group theory: a physicist’s survey, Cambridge University Press, Cambridge U.K. (2010).

    MATH  Google Scholar 

  35. K.M. Parattu and A. Wingerter, Tribimaximal mixing from small groups, arXiv:1012.2842 [SPIRES].

  36. P.O. Ludl, Comments on the classification of the finite subgroups of SU(3), arXiv:1101.2308 [SPIRES].

  37. Z.G. Berezhiani and M.Y. Khlopov, Cosmology of spontaneously broken gauge family symmetry, Z. Phys. C 49 (1991) 73 [SPIRES].

    Google Scholar 

  38. S.F. King and C. Luhn, A supersymmetric grand unified theory of flavour with PSL(2, 7) × SO(10), Nucl. Phys. B 832 (2010) 414 [arXiv:0912.1344] [SPIRES];

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Luhn.

Additional information

ArXiv ePrint: 1101.2417

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luhn, C. Spontaneous breaking of SU(3) to finite family symmetries — a pedestrian’s approach. J. High Energ. Phys. 2011, 108 (2011). https://doi.org/10.1007/JHEP03(2011)108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2011)108

Keywords

Navigation