Skip to main content
Log in

Two dimensional RG flows and Yang-Mills instantons

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study RG flow solutions in (1,0) six dimensional supergravity coupled to an anti-symmetric tensor and Yang-Mills multiplets corresponding to a semisimple group G. We turn on G instanton gauge fields, with instanton number N, in the conformally flat part of the 6D metric. The solution interpolates between two (4,0) supersymmetric AdS 3 × S 3 backgrounds with two different values of AdS 3 and S 3 radii and describes an RG flow in the dual 2D SCFT. For the single instanton case and G = SU(2), there exist a consistent reduction ansatz to three dimensions, and the solution in this case can be interpreted as an uplifted 3D solution. Correspondingly, we present the solution in the framework of N = 4 (SU(2) ⋉ R 3)2 three dimensional gauged supergravity. The flows studied here are of v.e.v. type, driven by a vacuum expectation value of a (not exactly) marginal operator of dimension two in the UV. We give an interpretation of the supergravity solution in terms of the D1/D5 system in type I string theory on K3, whose effective field theory is expected to flow to a (4,0) SCFT in the infrared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [SPIRES].

    Article  MathSciNet  MATH  Google Scholar 

  2. D.Z. Freedman, S.S. Gubser, K. Pilch and N.P. Warner, Renormalization group flows from holography supersymmetry and a c-theorem, Adv. Theor. Math. Phys. 3 (1999) 363 [hep-th/9904017] [SPIRES].

    MathSciNet  MATH  Google Scholar 

  3. A. Khavaev and N.P. Warner, A class of N = 1 supersymmetric RG flows from five-dimensional N = 8 supergravity, Phys. Lett. B 495 (2000) 215 [hep-th/0009159] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  4. L. Girardello, M. Petrini, M. Porrati and A. Zaffaroni, Novel local CFT and exact results on perturbations of N = 4 super Yang-Mills from AdS dynamics, JHEP 12 (1998) 022 [hep-th/9810126] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  5. M. Berg and H. Samtleben, An exact holographic RG flow between 2d conformal fixed points, JHEP 05 (2002) 006 [hep-th/0112154] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  6. E. Gava, P. Karndumri and K.S. Narain, AdS 3 vacua and RG flows in three dimensional gauged supergravities, JHEP 04 (2010) 117 [arXiv:1002.3760] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  7. A. Chatrabhuti and P. Karndumri, Vacua and RG flows in N = 9 three dimensional gauged supergravity, JHEP 10 (2010) 098 [arXiv:1007.5438] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  8. E. Gava, P. Karndumri and K.S. Narain, 3D gauged supergravity from SU(2) reduction of N = 16D supergravity, JHEP 09 (2010) 028 [arXiv:1006.4997] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  9. M.J. Duff, H. Lü and C.N. Pope, Heterotic phase transitions and singularities of the gauge dyonic string, Phys. Lett. B 378 (1996) 101 [hep-th/9603037] [SPIRES].

    ADS  Google Scholar 

  10. E. Lima, H. Lü, B.A. Ovrut and C.N. Pope, Instanton moduli and brane creation, Nucl. Phys. B 569 (2000) 247 [hep-th/9903001] [SPIRES].

    Article  ADS  Google Scholar 

  11. Y. Oz and D. Youm, The D1 − D5 brane system in type-I string theory, Phys. Lett. B 451 (1999) 336 [hep-th/9901088] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  12. M.R. Douglas, Gauge Fields and D-branes, J. Geom. Phys. 28 (1998) 255 [hep-th/9604198] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. E. Witten, σ-models and the ADHM construction of instantons, J. Geom. Phys. 15 (1995) 215 [hep-th/9410052] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. J.D. Brown and M. Henneaux, Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three Dimensional Gravity, Commun. Math. Phys. 104 (1986) 207.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].

    MathSciNet  MATH  Google Scholar 

  16. H. Nishino and E. Sezgin, The Complete N = 2, D = 6 Supergravity With Matter and Yang-Mills Couplings, Nucl. Phys. B 144 (1984) 353.

    Google Scholar 

  17. H. Nishino and E. Sezgin, New couplings of six-dimensional supergravity, Nucl. Phys. B 505 (1997) 497 [hep-th/9703075] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  18. H. Lü, C.N. Pope and E. Sezgin, SU(2) reduction of six-dimensional (1, 0) supergravity, Nucl. Phys. B 668 (2003) 237 [hep-th/0212323] [SPIRES].

    Article  ADS  Google Scholar 

  19. R. Jackiw, C. Nohl and C. Rebbi, Conformal properties of pseudoparticle configurations, Phys. Rev. D 15 (1977) 1642 [SPIRES].

    ADS  Google Scholar 

  20. H. Reinhardt and K. Langfeld, Nontrivial SU(N) instantons and exotic skyrmions, Phys. Lett. B 317 (1993) 590 [hep-ph/9308306] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  21. S. Vandoren and P. van Nieuwenhuizen, Lectures on instantons, arXiv:0802.1862 [SPIRES].

  22. J. Polchinski and E. Witten, Evidence for heterotic-type I string duality, Nucl. Phys. B 460 (1996) 525 [hep-th/9510169] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  23. M.J. Duff, R. Minasian and Edward Witten, Evidence for heterotic/heterotic duality, Nucl. Phys. B 465 (1996) 413 [hep-th/9601036] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  24. S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of spacetime and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  25. P.M. Petropoulos, N. Prezas and K. Sfetsos, Supersymmetric deformations of F1-NS5-branes and their exact CFT description, JHEP 09 (2009) 085 [arXiv:0905.1623] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  26. M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  27. B. de Wit, I. Herger and H. Samtleben, Gauged locally supersymmetric D = 3 nonlinear σ-models, Nucl. Phys. B 671 (2003) 175 [hep-th/0307006] [SPIRES].

    ADS  Google Scholar 

  28. H. Nicolai and H. Samtleben, Compact and noncompact gauged maximal supergravities in three dimensions, JHEP 04 (2001) 022 [hep-th/0103032] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  29. T. Fischbacher, H. Nicolai and H. Samtleben, Non-semisimple and complex gaugings of N = 16 supergravity, Commun. Math. Phys. 249 (2004) 475 [hep-th/0306276] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. J. Polchinski, String theory. Vol. 1: An introduction to the bosonic string, Cambridge University Press, Cambridge U.K. (2005).

    Google Scholar 

  31. M. Bañados and R. Caro, Holographic Ward identities: Examples from 2 + 1 gravity, JHEP 12 (2004) 036 [hep-th/0411060] [SPIRES].

    Article  ADS  Google Scholar 

  32. P. Kraus and F. Larsen, Holographic gravitational anomalies, JHEP 01 (2006) 022 [hep-th/0508218] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  33. P. Kraus and F. Larsen, Partition functions and elliptic genera from supergravity, JHEP 01 (2007) 002, [hep-th/0607138] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parinya Karndumri.

Additional information

ArXiv ePrint: 1012.4953

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gava, E., Karndumri, P. & Narain, K.S. Two dimensional RG flows and Yang-Mills instantons. J. High Energ. Phys. 2011, 106 (2011). https://doi.org/10.1007/JHEP03(2011)106

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2011)106

Keywords

Navigation