Skip to main content
Log in

Testing Supersymmetry at the LHC through gluon-fusion production of a slepton pair

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Renormalizable quartic couplings among new particles are typical of supersymmetric models. Their detection could provide a test for Supersymmetry, discriminating it from other extensions of the Standard Model. Quartic couplings among squarks and sleptons, together with the SU(3) gauge couplings for squarks, allow the production of a pair of sleptons through gluon fusion, at the one-loop level. The corresponding cross section, however, is at most of \( \mathcal{O}(1) \) fb for slepton and squark masses of \( \mathcal{O}\left( {100} \right) \) GeV. Our investigation is then extended to the gluon-fusion production of sleptons through the exchange of Higgs bosons. The cross section is even smaller, of \( \mathcal{O}\left( {0.1} \right) \) fb, if the exchanged Higgs boson has mass considerably below the slepton-pair threshold, but it is enhanced when it is resonant. It can reach the \( \mathcal{O}\left( {10} \right) \) fb mark for the production of sleptons of same chirality, and it can exceed it for the production of \( \tilde{\tau } \)’s of opposite chirality, even when the chirality-mixing terms in the squark sector are vanishing. The cross section may be further enhanced if these mixing terms are nonnegligible, providing therefore a potentially interesting probe of the Higgs sector, in particular of μ, tan β, and the trilinear soft Supersymmetry-breaking couplings, also for more realistic sfermion spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Murayama, Confusing signals of supersymmetry, talk given at the International Linear Collider Workshop (LCWS2000), Fermilab, Batavia Illinois U.S.A., 24–28 Oct. 2000 [http://conferences.fnal.gov/lcws2000/web/P3_Murayama/index.html].

  2. L.-T. Wang and I. Yavin, A review of spin determination at the LHC, Int. J. Mod. Phys. A 23 (2008) 4647 [arXiv:0802.2726] [SPIRES].

    ADS  Google Scholar 

  3. F. Boudjema and R.K. Singh, A model independent spin analysis of fundamental particles using azimuthal asymmetries, JHEP 07 (2009) 028 [arXiv:0903.4705] [SPIRES].

    Article  ADS  Google Scholar 

  4. S.Y. Choi, K. Hagiwara, H.U. Martyn, K. Mawatari and P.M. Zerwas, Spin analysis of supersymmetric particles, Eur. Phys. J. C 51 (2007) 753 [hep-ph/0612301] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  5. F. del Aguila and L. Ametller, On the detectability of sleptons at large hadron colliders, Phys. Lett. B 261 (1991) 326 [SPIRES].

    ADS  Google Scholar 

  6. M. Bisset, S. Raychaudhuri and P. Roy, Higgs-mediated slepton pair-production at the Large Hadron Collider, hep-ph/9602430 [SPIRES].

  7. E. Eichten, I. Hinchliffe, K.D. Lane and C. Quigg, Super collider physics, Rev. Mod. Phys. 56 (1984) 579 [SPIRES].

    Article  ADS  Google Scholar 

  8. S. Dawson, E. Eichten and C. Quigg, Search for supersymmetric particles in hadron-hadron collisions, Phys. Rev. D 31 (1985) 1581 [SPIRES].

    ADS  Google Scholar 

  9. P. Chiappetta, J. Soffer and P. Taxil, Spin asymmetries for scalar leptons from W and Z decay in \( p\bar{p} \) collisions, Phys. Lett. B 162 (1985) 192 [SPIRES].

    ADS  Google Scholar 

  10. H. Baer, C.-h. Chen, F. Paige and X. Tata, Detecting sleptons at hadron colliders and supercolliders, Phys. Rev. D 49 (1994) 3283 [hep-ph/9311248] [SPIRES].

    ADS  Google Scholar 

  11. K. Hikasa, Supersymmetric standard model for collider physicists, notes to be requested to the author.

  12. S.P. Martin, A supersymmetry primer, hep-ph/9709356 [SPIRES].

  13. J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [SPIRES].

    Article  ADS  Google Scholar 

  14. S. Kawabata, A new Monte Carlo event generator for high-energy physics, Comput. Phys. Commun. 41 (1986) 127 [SPIRES].

    Article  ADS  Google Scholar 

  15. S. Kawabata, A new version of the multidimensional integration and event generation package BASES/SPRING, Comp. Phys. Commun. 88 (1995) 309 [SPIRES].

    Article  ADS  MATH  Google Scholar 

  16. M. Claudson, L.J. Hall and I. Hinchliffe, Low-energy supergravity: false vacua and vacuous predictions, Nucl. Phys. B 228 (1983) 501 [SPIRES].

    Article  ADS  Google Scholar 

  17. J.A. Casas, A. Lleyda and C. Muñoz, Strong constraints on the parameter space of the MSSM from charge and color breaking minima, Nucl. Phys. B 471 (1996) 3 [hep-ph/9507294] [SPIRES].

    Article  ADS  Google Scholar 

  18. A. Kusenko, P. Langacker and G. Segre, Phase transitions and vacuum tunneling into charge and color breaking minima in the MSSM, Phys. Rev. D 54 (1996) 5824 [hep-ph/9602414] [SPIRES].

    ADS  Google Scholar 

  19. U. Sarid, Tools for tunneling, Phys. Rev. D 58 (1998) 085017 [hep-ph/9804308] [SPIRES].

    ADS  Google Scholar 

  20. F. Borzumati, G.R. Farrar, N. Polonsky and S.D. Thomas, Soft Yukawa couplings in supersymmetric theories, Nucl. Phys. B 555 (1999) 53 [hep-ph/9902443] [SPIRES].

    Article  ADS  Google Scholar 

  21. M. Spira, QCD effects in Higgs physics, Fortsch. Phys. 46 (1998) 203 [hep-ph/9705337] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  22. A. Djouadi, The anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [SPIRES].

    Article  ADS  Google Scholar 

  23. Higgs Working Group collaboration, M.S. Carena et al., Report of the Tevatron Higgs working group, hep-ph/0010338 [SPIRES].

  24. J.S. Lee et al., CPsuperH: A computational tool for Higgs phenomenology in the minimal supersymmetric standard model with explicit CP-violation, Comput. Phys. Commun. 156 (2004) 283 [hep-ph/0307377] [SPIRES].

    Article  ADS  Google Scholar 

  25. D. Graudenz, M. Spira and P.M. Zerwas, QCD corrections to Higgs boson production at proton proton colliders, Phys. Rev. Lett. 70 (1993) 1372 [SPIRES].

    Article  ADS  Google Scholar 

  26. M. Spira, A. Djouadi, D. Graudenz and P.M. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [SPIRES].

    Article  ADS  Google Scholar 

  27. R.V. Harlander and K.J. Ozeren, Top mass effects in Higgs production at next-to-next-to-leading order QCD: virtual corrections, Phys. Lett. B 679 (2009) 467 [arXiv:0907.2997] [SPIRES].

    ADS  Google Scholar 

  28. A. Pak, M. Rogal and M. Steinhauser, Virtual three-loop corrections to Higgs boson production in gluon fusion for finite top quark mass, Phys. Lett. B 679 (2009) 473 [arXiv:0907.2998] [SPIRES].

    ADS  Google Scholar 

  29. S. Catani, D. de Florian, M. Grazzini and P. Nason, Soft-gluon resummation for Higgs boson production at hadron colliders, JHEP 07 (2003) 028 [hep-ph/0306211] [SPIRES].

    Article  ADS  Google Scholar 

  30. S. Dawson, A. Djouadi and M. Spira, QCD corrections to SUSY Higgs production: The role of squark loops, Phys. Rev. Lett. 77 (1996) 16 [hep-ph/9603423] [SPIRES].

    Article  ADS  Google Scholar 

  31. M. Muhlleitner and M. Spira, Higgs boson production via gluon fusion: squark loops at NLO QCD, Nucl. Phys. B 790 (2008) 1 [hep-ph/0612254] [SPIRES].

    Article  ADS  Google Scholar 

  32. R. Bonciani, G. Degrassi and A. Vicini, Scalar particle contribution to Higgs production via gluon fusion at NLO, JHEP 11 (2007) 095 [arXiv:0709.4227] [SPIRES].

    Article  ADS  Google Scholar 

  33. M. Muhlleitner, H. Rzehak and M. Spira, MSSM Higgs boson production via gluon fusion: the large gluino mass limit, JHEP 04 (2009) 023 [arXiv:0812.3815] [SPIRES].

    Article  ADS  Google Scholar 

  34. H. Baer, B.W. Harris and M.H. Reno, Next-to-leading order slepton pair production at hadron colliders, Phys. Rev. D 57 (1998) 5871 [hep-ph/9712315] [SPIRES].

    ADS  Google Scholar 

  35. W. Beenakker et al., The production of charginos/neutralinos and sleptons at hadron colliders, Phys. Rev. Lett. 83 (1999) 3780 [Erratum-ibid. 100 (2008) 029901] [hep-ph/9906298] [SPIRES].

    Article  ADS  Google Scholar 

  36. M. Grazzini, The Drell-Yan process in NNLO QCD, arXiv:0908.1336 [SPIRES].

  37. R.V. Harlander and M. Steinhauser, Supersymmetric Higgs production in gluon fusion at next-to-leading order, JHEP 09 (2004) 066 [hep-ph/0409010] [SPIRES].

    Article  ADS  Google Scholar 

  38. R.V. Harlander and F. Hofmann, Pseudo-scalar Higgs production at next-to-leading order SUSY-QCD, JHEP 03 (2006) 050 [hep-ph/0507041] [SPIRES].

    Article  ADS  Google Scholar 

  39. G. Degrassi and P. Slavich, On the radiative corrections to the neutral Higgs boson masses in the NMSSM, Nucl. Phys. B 825 (2010) 119 [arXiv:0907.4682] [SPIRES].

    Article  ADS  Google Scholar 

  40. C. Anastasiou, S. Beerli and A. Daleo, The two-loop QCD amplitude ggh,H in the minimal supersymmetric standard model, Phys. Rev. Lett. 100 (2008) 241806 [arXiv:0803.3065] [SPIRES].

    Article  ADS  Google Scholar 

  41. M.S. Carena, D. Garcia, U. Nierste and C.E.M. Wagner, Effective Lagrangian for the \( \bar{t}b{H^{+} } \) interaction in the MSSM and charged Higgs phenomenology, Nucl. Phys. B 577 (2000) 88 [hep-ph/9912516] [SPIRES].

    Article  ADS  Google Scholar 

  42. J. Guasch, P. Hafliger and M. Spira, MSSM Higgs decays to bottom quark pairs revisited, Phys. Rev. D 68 (2003) 115001 [hep-ph/0305101] [SPIRES].

    ADS  Google Scholar 

  43. F. Borzumati, C. Greub and Y. Yamada, Beyond leading-order corrections to \( \bar{B} \to {X_s}\gamma \) at large tan β: The charged-Higgs contribution, Phys. Rev. D 69 (2004) 055005 [hep-ph/0311151] [SPIRES].

    ADS  Google Scholar 

  44. F. Borzumati, C. Greub and Y. Yamada, Towards an exact evaluation of the supersymmetric O(α s tan β) corrections to \( \bar{B} \to {X_s}\gamma \), hep-ph/0305063 [SPIRES].

  45. D. Noth and M. Spira, Higgs boson couplings to bottom quarks: two-loop supersymmetry-QCD corrections, Phys. Rev. Lett. 101 (2008) 181801 [arXiv:0808.0087] [SPIRES].

    Article  ADS  Google Scholar 

  46. S.-H. Zhu, Pseudoscalar Higgs boson pair production in photon photon collisions, J. Phys. G 24 (1998) 1703 [SPIRES].

    ADS  Google Scholar 

  47. S.-H. Zhu, C.-S. Li and C.-S. Gao, Lightest neutral Higgs pair production in photon photon collisions in the minimal supersymmetric standard model, Phys. Rev. D 58 (1998) 015006 [hep-ph/9710424] [SPIRES];

    ADS  Google Scholar 

  48. G.J. Gounaris and P.I. Porfyriadis, The gamma gammaA0 A0 process at a gamma gamma collider, Eur. Phys. J. C 18 (2000) 181 [hep-ph/0007110] [SPIRES].

    Article  ADS  Google Scholar 

  49. Y.-J. Zhou et al., Neutral Higgs boson pair production via gamma gamma collision in the minimal supersymmetric standard model at linear colliders, Phys. Rev. D 68 (2003) 093004 [hep-ph/0308226] [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Borzumati.

Additional information

ArXiv ePrint: 0912.0454

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borzumati, F., Hagiwara, K. Testing Supersymmetry at the LHC through gluon-fusion production of a slepton pair. J. High Energ. Phys. 2011, 103 (2011). https://doi.org/10.1007/JHEP03(2011)103

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2011)103

Keywords

Navigation