Skip to main content
Log in

Emergent AdS3 in the zero entropy extremal black holes

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We investigate the zero entropy limit of the near horizon geometries of D = 4 and D = 5 general extremal black holes with \( {\text{SL}}\left( {2,\mathbb{R}} \right) \times {\text{U}}{(1)^{D - 3}} \) symmetry. We derive some conditions on the geometries from expectation of regularity. We then show that an AdS3 structure emerges in a certain scaling limit, though the periodicity shrinks to zero. We present some examples to see the above concretely. We also comment on some implications to the Kerr/CFT correspondence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Guica, T. Hartman, W. Song and A. Strominger, The Kerr/CFT Correspondence, Phys. Rev. D 80 (2009) 124008 [arXiv:0809.4266] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  2. H. Lü, J. Mei and C.N. Pope, Kerr/CFT Correspondence in Diverse Dimensions, JHEP 04 (2009) 054 [arXiv:0811.2225] [SPIRES].

    Article  Google Scholar 

  3. T. Azeyanagi, N. Ogawa and S. Terashima, Holographic Duals of Kaluza-Klein Black Holes, JHEP 04 (2009) 061 [arXiv:0811.4177] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  4. T. Hartman, K. Murata, T. Nishioka and A. Strominger, CFT Duals for Extreme Black Holes, JHEP 04 (2009) 019 [arXiv:0811.4393] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  5. G. Compere, K. Murata and T. Nishioka, Central Charges in Extreme Black Hole/CFT Correspondence, JHEP 05 (2009) 077 [arXiv:0902.1001] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  6. T. Azeyanagi, G. Compere, N. Ogawa, Y. Tachikawa and S. Terashima, Higher-Derivative Corrections to the Asymptotic Virasoro Symmetry of 4d Extremal Black Holes, Prog. Theor. Phys. 122 (2009) 355 [arXiv:0903.4176] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  7. I. Bredberg, T. Hartman, W. Song and A. Strominger, Black Hole Superradiance From Kerr/CFT, JHEP 04 (2010) 019 [arXiv:0907.3477] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  8. M. Cvetič and F. Larsen, Greybody Factors and Charges in Kerr/CFT, JHEP 09 (2009) 088 [arXiv:0908. 1136] [SPIRES].

    Article  ADS  Google Scholar 

  9. A. Castro, A. Maloney and A. Strominger, Hidden Conformal Symmetry of the Kerr Black Hole, Phys. Rev. D 82 (2010) 024008 [arXiv:1004.0996] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  10. Y. Matsuo, T. Tsukioka and C.-M. Yoo, Another Realization of Kerr/CFT Correspondence, Nucl. Phys. B 825 (2010) 231 [arXiv:0907.0303] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  11. Y. Matsuo, T. Tsukioka and C.-M. Yoo, Yet Another Realization of Kerr/CFT Correspondence, Europhys. Lett. 89 (2010) 60001 [arXiv:0907.4272] [SPIRES].

    Article  ADS  Google Scholar 

  12. J. Rasmussen, Isometry-preserving boundary conditions in the Kerr/CFT correspondence, Int. J. Mod. Phys. A 25 (2010) 1597 [arXiv:0908.0184] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  13. J. Rasmussen, A near-NHEK/CFT correspondence, Int. J. Mod. Phys. A 25 (2010) 5517 [arXiv:1004.4773] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  14. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [SPIRES].

    Article  MathSciNet  MATH  Google Scholar 

  15. T. Azeyanagi, N. Ogawa and S. Terashima, The Kerr/CFT Correspondence and String Theory, Phys. Rev. D 79 (2009) 106009 [arXiv:0812.4883] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  16. V. Balasubramanian, J. de Boer, M.M. Sheikh-Jabbari and J. Simon, What is a chiral 2d CFT? And what does it have to do with extremal black holes?, JHEP 02 (2010) 017 [arXiv:0906.3272] [SPIRES].

    Article  ADS  Google Scholar 

  17. A.J. Amsel, G.T. Horowitz, D. Marolf and M.M. Roberts, No Dynamics in the Extremal Kerr Throat, JHEP 09 (2009) 044 [arXiv:0906.2376] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  18. O.J.C. Dias, H.S. Reall and J.E. Santos, Kerr-CFT and gravitational perturbations, JHEP 08 (2009) 101 [arXiv:0906.2380] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  19. A. Strominger, Black hole entropy from near-horizon microstates, JHEP 02 (1998) 009 [hep-th/9712251] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  20. M. Guica and A. Strominger, Microscopic Realization of the Kerr/CFT Correspondence, JHEP 02 (2011) 010 [arXiv:1009.5039] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  21. J.C. Breckenridge, R.C. Myers, A.W. Peet and C. Vafa, D-branes and spinning black holes, Phys. Lett. B 391 (1997) 93 [hep-th/9602065] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  22. J.C. Breckenridge et al., Macroscopic and Microscopic Entropy of Near-Extremal Spinning Black Holes, Phys. Lett. B 381 (1996) 423 [hep-th/9603078] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  23. M. Cvetič and D. Youm, General Rotating Five Dimensional Black Holes of Toroidally Compactified Heterotic String, Nucl. Phys. B 476 (1996) 118 [hep-th/9603100] [SPIRES].

    Article  ADS  Google Scholar 

  24. M. Guica and A. Strominger, Wrapped M2/M5 duality, JHEP 10 (2009) 036 [hep-th/0701011] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  25. G.W. Gibbons and C.A.R. Herdeiro, Supersymmetric rotating black holes and causality violation, Class. Quant. Grav. 16 (1999) 3619 [hep-th/9906098] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. N. Alonso-Alberca, E. Lozano-Tellechea and T. Ortín, The near-horizon limit of the extreme rotating D = 5 black hole as a homogeneous spacetime, Class. Quant. Grav. 20 (2003) 423 [hep-th/0209069] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  27. L. Dyson, Studies of the over-rotating BMPV solution, JHEP 01 (2007) 008 [hep-th/0608137] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  28. A. Strominger and C. Vafa, Microscopic Origin of the Bekenstein-Hawking Entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  29. J.M. Maldacena, A. Strominger and E. Witten, Black hole entropy in M-theory, JHEP 12 (1997) 002 [hep-th/9711053] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  30. G. Compere, W. Song and A. Virmani, Microscopics of Extremal Kerr from Spinning M5 Branes, arXiv:1010.0685 [SPIRES].

  31. H.K. Kunduri, J. Lucietti and H.S. Reall, Near-horizon symmetries of extremal black holes, Class. Quant. Grav. 24 (2007) 4169 [arXiv:0705.4214] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. S. Hollands and A. Ishibashi, All vacuum near horizon geometries in arbitrary dimensions, Annales Henri Poincaré 10 (2010) 1537 [arXiv:0909.3462] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. H.K. Kunduri and J. Lucietti, An infinite class of extremal horizons in higher dimensions, arXiv:1002.4656 [SPIRES].

  34. Y. Nakayama, Emerging AdS from Extremally Rotating NS5-branes, Phys. Lett. B 673 (2009) 272 [arXiv:0812.2234] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  35. J.M. Bardeen and G.T. Horowitz, The extreme Kerr throat geometry: A vacuum analog of AdS 2 × S 2, Phys. Rev. D 60 (1999) 104030 [hep-th/9905099] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  36. V. Balasubramanian, J. de Boer, V. Jejjala and J. Simon, Entropy of near-extremal black holes in AdS 5, JHEP 05 (2008) 067 [arXiv:0707.3601] [SPIRES].

    Article  ADS  Google Scholar 

  37. R. Fareghbal, C.N. Gowdigere, A.E. Mosaffa and M.M. Sheikh-Jabbari, Nearing Extremal Intersecting Giants and New Decoupled Sectors in \( \mathcal{N} = 4 \) SYM, JHEP 08 (2008) 070 [arXiv:0801.4457] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  38. R.C. Myers and M.J. Perry, Black Holes in Higher Dimensional Space-Times, Ann. Phys. 172 (1986) 304 [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. G. W. Gibbons and D. L. Wiltshire, Black Holes in Kaluza-Klein Theory, Ann. Phys. 167 (1986) 201.

    Article  MathSciNet  ADS  Google Scholar 

  40. D. Rasheed, The Rotating dyonic black holes of Kaluza-Klein theory, Nucl. Phys. B 454 (1995) 379 [hep-th/9505038] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  41. F. Larsen, Rotating Kaluza-Klein black holes, Nucl. Phys. B 575 (2000) 211 [hep-th/9909102] [SPIRES].

    Article  ADS  Google Scholar 

  42. H.K. Kunduri and J. Lucietti, A classification of near-horizon geometries of extremal vacuum black holes, J. Math. Phys. 50 (2009) 082502 [arXiv:0806.2051] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  43. H.K. Kunduri and J. Lucietti, Uniqueness of near-horizon geometries of rotating extremal AdS 4 black holes, Class. Quant. Grav. 26 (2009) 055019 [arXiv:0812.1576] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  44. O. Coussaert and M. Henneaux, Self-dual solutions of (2 + 1) Einstein gravity with a negative cosmological constant, hep-th/9407181 [SPIRES].

  45. F. Loran and H. Soltanpanahi, 5D Extremal Rotating Black Holes and CFT duals, Class. Quant. Grav. 26 (2009) 155019 [arXiv:0901.1595] [SPIRES].

    Article  ADS  Google Scholar 

  46. D. Astefanesei, K. Goldstein, R.P. Jena, A. Sen and S.P. Trivedi, Rotating attractors, JHEP 10 (2006) 058 [hep-th/0606244] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  47. J.D. Brown and M. Henneaux, Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional Gravity, Commun. Math. Phys. 104 (1986) 207 [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  48. A.P. Porfyriadis and F. Wilczek, Effective Action, Boundary Conditions and Virasoro Algebra for AdS 3, arXiv:1007.1031 [SPIRES].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noriaki Ogawa.

Additional information

ArXiv ePrint: 1010.4291

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azeyanagi, T., Ogawa, N. & Terashima, S. Emergent AdS3 in the zero entropy extremal black holes. J. High Energ. Phys. 2011, 4 (2011). https://doi.org/10.1007/JHEP03(2011)004

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2011)004

Keywords

Navigation