The S-matrix in twistor space

  • N. Arkani-Hamed
  • F. Cachazo
  • C. Cheung
  • J. Kaplan
Open Access


The marvelous simplicity and remarkable hidden symmetries recently uncovered in (Super) Yang-Mills and (Super)Gravity scattering amplitudes strongly suggests the existence of a “weak-weak” dual formulation of these theories where these structures are made more manifest at the expense of manifest locality. In this note we suggest that in four dimensions, this dual description lives in (2, 2) signature and is naturally formulated in twistor space. We begin at tree-level, by recasting the momentum-space BCFW recursion relation in a completely on-shell form that begs to be transformed into twistor space. Our transformation is strongly inspired by Witten’s twistor string theory, but differs in treating twistor and dual twistor variables on a more equal footing; a related transcription of the BCFW formula using only twistor space variables has been carried out independently by Mason and Skinner. Using both twistor and dual twistor variables, the three and four-point amplitudes are strikingly simple–for Yang-Mills theories they are “1” or “-1”. The BCFW computation of higher-order amplitudes can be represented by a simple set of diagrammatic rules, concretely realizing Penrose’s program of relating “twistor diagrams” to scattering amplitudes. More specifically, we give a precise definition of the twistor diagram formalism developed over the past few years by Andrew Hodges. The “Hodges diagram” representation of the BCFW rules allows us to compute amplitudes and study their remarkable properties in twistor space. For instance the diagrams for Yang-Mills theory are topologically disks and not trees, and reveal striking connections between amplitudes that are not manifest in momentum space. Twistor space also suggests a new representation of the amplitudes directly in momentum space, that is naturally determined by the Hodges diagrams. The BCFW rules and Hodges diagrams also enable a systematic twistorial formulation of gravity. All tree amplitudes can be combined into an “S-Matrix” scattering functional which is the natural holographic observable in asymptotically flat space; the BCFW formula turns into a simple quadratic equation for this “S-Matrix” in twistor space, providing a holographic description of \( \mathcal{N} = 4 \) SYM and \( \mathcal{N} = 8 \) Supergravity at tree level. We move on to initiate the exploration of loop amplitudes in (2, 2) signature and twistor space, beginning with a discussion of their IR behavior. We find that the natural pole prescriptions needed for transformation to twistor space make the amplitudes perfectly well-defined objects, free of IR divergences. Indeed in momentum space, the loop amplitudes so regulated vanish for generic momenta, and transformed to twistor space, are even simpler than their tree-level counterparts: the full 4-pt one-loop amplitudes in \( \mathcal{N} = 4 \) SYM are simply equal to “1” or “0”! This further supports the idea that there exists a sharply defined object corresponding to the S-Matrix in (2, 2) signature, computed by a dual theory naturally living in twistor space.


Supersymmetric gauge theory Duality in Gauge Field Theories Classical Theories of Gravity 


  1. [1]
    M.L. Mangano and S.J. Parke, Multi-Parton Amplitudes in Gauge Theories, Phys. Rept. 200 (1991) 301 [hep-th/0509223] [SPIRES].CrossRefADSGoogle Scholar
  2. [2]
    L.J. Dixon, Calculating scattering amplitudes efficiently, hep-ph/9601359 [SPIRES].
  3. [3]
    F. Cachazo and P. Svrček, Lectures on twistor strings and perturbative Yang-Mills theory, PoS(RTN2005)004 [hep-th/0504194] [SPIRES].
  4. [4]
    Z. Bern, L.J. Dixon and D.A. Kosower, On-Shell Methods in Perturbative QCD, Annals Phys. 322 (2007) 1587 [arXiv:0704.2798] [SPIRES].zbMATHCrossRefADSGoogle Scholar
  5. [5]
    S.J. Parke and T.R. Taylor, An Amplitude for n Gluon Scattering, Phys. Rev. Lett. 56 (1986) 2459 [SPIRES].CrossRefADSGoogle Scholar
  6. [6]
    F.A. Berends and W.T. Giele, Recursive Calculations for Processes with n Gluons, Nucl. Phys. B 306 (1988) 759 [SPIRES].CrossRefADSGoogle Scholar
  7. [7]
    L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP 06 (2007) 064 [arXiv:0705.0303] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  8. [8]
    J.M. Drummond, G.P. Korchemsky and E. Sokatchev, Conformal properties of four-gluon planar amplitudes and Wilson loops, Nucl. Phys. B 795 (2008) 385 [arXiv:0707.0243] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  9. [9]
    A. Brandhuber, P. Heslop and G. Travaglini, MHV Amplitudes in N = 4 Super Yang-Mills and Wilson Loops, Nucl. Phys. B 794 (2008) 231 [arXiv:0707.1153] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  10. [10]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, On planar gluon amplitudes/Wilson loops duality, Nucl. Phys. B 795 (2008) 52 [arXiv:0709.2368] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  11. [11]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Conformal Ward identities for Wilson loops and a test of the duality with gluon amplitudes, Nucl. Phys. B 826 (2010) 337 [arXiv:0712.1223] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  12. [12]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Dual superconformal symmetry of scattering amplitudes in N = 4 super-Yang-Mills theory, Nucl. Phys. B 828 (2010) 317 [arXiv:0807.1095] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  13. [13]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Generalized unitarity for N = 4 super-amplitudes, arXiv:0808.0491 [SPIRES].
  14. [14]
    N. Berkovits and J. Maldacena, Fermionic T-duality, Dual Superconformal Symmetry and the Amplitude/Wilson Loop Connection, JHEP 09 (2008) 062 [arXiv:0807.3196] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  15. [15]
    N. Beisert, R. Ricci, A.A. Tseytlin and M. Wolf, Dual Superconformal Symmetry from AdS 5 × S 5 Superstring Integrability, Phys. Rev. D 78 (2008) 126004 [arXiv:0807.3228] [SPIRES].ADSMathSciNetGoogle Scholar
  16. [16]
    J. McGreevy and A. Sever, Planar scattering amplitudes from Wilson loops, JHEP 08 (2008) 078 [arXiv:0806.0668] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  17. [17]
    J.M. Drummond, J. Henn, V.A. Smirnov and E. Sokatchev, Magic identities for conformal four-point integrals, JHEP 01 (2007) 064 [hep-th/0607160] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  18. [18]
    Z. Bern, M. Czakon, L.J. Dixon, D.A. Kosower and V.A. Smirnov, The Four-Loop Planar Amplitude and Cusp Anomalous Dimension in Maximally Supersymmetric Yang-Mills Theory, Phys. Rev. D 75 (2007) 085010 [hep-th/0610248] [SPIRES].ADSMathSciNetGoogle Scholar
  19. [19]
    Z. Bern, J.J.M. Carrasco, H. Johansson and D.A. Kosower, Maximally supersymmetric planar Yang-Mills amplitudes at five loops, Phys. Rev. D 76 (2007) 125020 [arXiv:0705.1864] [SPIRES].ADSMathSciNetGoogle Scholar
  20. [20]
    Z. Bern, L.J. Dixon, D.C. Dunbar, M. Perelstein and J.S. Rozowsky, On the relationship between Yang-Mills theory and gravity and its implication for ultraviolet divergences, Nucl. Phys. B 530 (1998) 401 [hep-th/9802162] [SPIRES].CrossRefADSGoogle Scholar
  21. [21]
    Z. Bern, L.J. Dixon, M. Perelstein and J.S. Rozowsky, Multi-leg one-loop gravity amplitudes from gauge theory, Nucl. Phys. B 546 (1999) 423 [hep-th/9811140] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  22. [22]
    Z. Bern, N.E.J. Bjerrum-Bohr and D.C. Dunbar, Inherited twistor-space structure of gravity loop amplitudes, JHEP 05 (2005) 056 [hep-th/0501137] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  23. [23]
    N.E.J. Bjerrum-Bohr, D.C. Dunbar and H. Ita, Six-point one-loop N = 8 supergravity NMHV amplitudes and their IR behaviour, Phys. Lett. B 621 (2005) 183 [hep-th/0503102] [SPIRES].ADSMathSciNetGoogle Scholar
  24. [24]
    N.E.J. Bjerrum-Bohr, D.C. Dunbar, H. Ita, W.B. Perkins and K. Risager, The no-triangle hypothesis for N = 8 supergravity, JHEP 12 (2006) 072 [hep-th/0610043] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  25. [25]
    Z. Bern, J.J. Carrasco, D. Forde, H. Ita and H. Johansson, Unexpected Cancellations in Gravity Theories, Phys. Rev. D 77 (2008) 025010 [arXiv:0707.1035] [SPIRES].ADSMathSciNetGoogle Scholar
  26. [26]
    N.E.J. Bjerrum-Bohr and P. Vanhove, Explicit Cancellation of Triangles in One-loop Gravity Amplitudes, JHEP 04 (2008) 065 [arXiv:0802.0868] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  27. [27]
    N.E.J. Bjerrum-Bohr and P. Vanhove, Absence of Triangles in Maximal Supergravity Amplitudes, JHEP 10 (2008) 006 [arXiv:0805.3682] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  28. [28]
    N.E.J. Bjerrum-Bohr and P. Vanhove, On Cancellations of Ultraviolet Divergences in Supergravity Amplitudes, Fortsch. Phys. 56 (2008) 824 [arXiv:0806.1726] [SPIRES].zbMATHCrossRefMathSciNetGoogle Scholar
  29. [29]
    P.S. Howe and K.S. Stelle, Supersymmetry counterterms revisited, Phys. Lett. B 554 (2003) 190 [hep-th/0211279] [SPIRES].ADSMathSciNetGoogle Scholar
  30. [30]
    N. Berkovits, New higher-derivative R 4 theorems, Phys. Rev. Lett. 98 (2007) 211601 [hep-th/0609006] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  31. [31]
    M.B. Green, J.G. Russo and P. Vanhove, Ultraviolet properties of maximal supergravity, Phys. Rev. Lett. 98 (2007) 131602 [hep-th/0611273] [SPIRES].CrossRefADSGoogle Scholar
  32. [32]
    Z. Bern et al., Three-Loop Superfiniteness of N = 8 Supergravity, Phys. Rev. Lett. 98 (2007) 161303 [hep-th/0702112] [SPIRES].CrossRefADSGoogle Scholar
  33. [33]
    R. Kallosh, The Effective Action of N = 8 Supergravity, arXiv:0711.2108 [SPIRES].
  34. [34]
    R. Kallosh and M. Soroush, Explicit Action of E7(7) on N = 8 Supergravity Fields, Nucl. Phys. B 801 (2008) 25 [arXiv:0802.4106] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  35. [35]
    R. Kallosh, On a possibility of a UV finite N = 8 supergravity, arXiv:0808.2310 [SPIRES].
  36. [36]
    Z. Bern, J.J.M. Carrasco, L.J. Dixon, H. Johansson and R. Roiban, Manifest Ultraviolet Behavior for the Three-Loop Four-Point Amplitude of N = 8 Supergravity, Phys. Rev. D 78 (2008) 105019 [arXiv:0808.4112] [SPIRES].ADSGoogle Scholar
  37. [37]
    R. Kallosh and T. Kugo, The footprint of E7 in amplitudes of N = 8 supergravity, JHEP 01 (2009) 072 [arXiv:0811.3414] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  38. [38]
    R. Kallosh, C.H. Lee and T. Rube, N=8 Supergravity 4-point Amplitudes, JHEP 02 (2009) 050 [arXiv:0811.3417] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  39. [39]
    Z. Bern, J.J.M. Carrasco and H. Johansson, Progress on Ultraviolet Finiteness of Supergravity, arXiv:0902.3765 [SPIRES].
  40. [40]
    N. Arkani-Hamed, F. Cachazo, C. Cheung and J. Kaplan, Holography and the S-Matrix, in preparation.Google Scholar
  41. [41]
    R. Britto, F. Cachazo, B. Feng and E. Witten, Direct Proof Of Tree-Level Recursion Relation In Yang-Mills Theory, Phys. Rev. Lett. 94 (2005) 181602 [hep-th/0501052] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  42. [42]
    R. Britto, F. Cachazo and B. Feng, New Recursion Relations for Tree Amplitudes of Gluons, Nucl. Phys. B 715 (2005) 499 [hep-th/0412308] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  43. [43]
    J. Bedford, A. Brandhuber, B.J. Spence and G. Travaglini, A recursion relation for gravity amplitudes, Nucl. Phys. B 721 (2005) 98 [hep-th/0502146] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  44. [44]
    F. Cachazo and P. Svrček, Tree level recursion relations in general relativity, hep-th/0502160 [SPIRES].
  45. [45]
    P. Benincasa, C. Boucher-Veronneau and F. Cachazo, Taming tree amplitudes in general relativity, JHEP 11 (2007) 057 [hep-th/0702032] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  46. [46]
    N. Arkani-Hamed and J. Kaplan, On Tree Amplitudes in Gauge Theory and Gravity, JHEP 04 (2008) 076 [arXiv:0801.2385] [SPIRES].CrossRefMathSciNetGoogle Scholar
  47. [47]
    C. Cheung, On-Shell Recursion Relations for Generic Theories, arXiv:0808.0504 [SPIRES].
  48. [48]
    R. Penrose, Twistor algebra, J. Math. Phys. 8 (1967) 345 [SPIRES].zbMATHCrossRefADSMathSciNetGoogle Scholar
  49. [49]
    R. Penrose, The Central Programme of Twistor Theory, Chaos Solitons Fractals 10 (1999) 581 [SPIRES].zbMATHCrossRefMathSciNetGoogle Scholar
  50. [50]
    R. Penrose and M.A.H. MacCallum, Twistor theory: An Approach to the quantization of fields and space-time, Phys. Rept. 6 (1972) 241 [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  51. [51]
    R. Penrose and W. Rindler, Spinors And Space-Time. Volume I: Two-Spinor Calculus and Relativistic Fields, Volume II: Spinor And Twistor Methods In Spacetime Geometry, Cambridge University Press, Cambridege U.K. (1986).Google Scholar
  52. [52]
    R. Penrose, Twistor quantization and curved space-time, Int. J. Theor. Phys. 1 (1968) 61 [SPIRES].CrossRefGoogle Scholar
  53. [53]
    A.P. Hodges and S. Huggett, Twistor Diagrams Surveys High Energ. Phys. 1 (1980) 333 [SPIRES].Google Scholar
  54. [54]
    A. Hodges, Twistor Diagrams, Physica A 114 (1982) 157.ADSMathSciNetGoogle Scholar
  55. [55]
    A. Hodges, Twistor Diagrams, in The Geometric Universe: Science, Geometry, and The Work Of Roger Penrose, S. A. Huggett et. al. eds., Oxford University Press, Oxford U.K. (1998).Google Scholar
  56. [56]
    L.J. Mason, Twistor actions for non-self-dual fields: A derivation of twistor-string theory, JHEP 10 (2005) 009 [hep-th/0507269] [SPIRES].CrossRefADSGoogle Scholar
  57. [57]
    R. Boels, L. Mason and D. Skinner, Supersymmetric gauge theories in twistor space, JHEP 02 (2007) 014 [hep-th/0604040] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  58. [58]
    M. Abou-Zeid, C.M. Hull and L.J. Mason, Einstein supergravity and new twistor string theories, Commun. Math. Phys. 282 (2008) 519 [hep-th/0606272] [SPIRES].zbMATHCrossRefADSMathSciNetGoogle Scholar
  59. [59]
    L.J. Mason and M. Wolf, A Twistor Action for N = 8 Self-Dual Supergravity, Commun. Math. Phys. 288 (2009) 97 [arXiv:0706.1941] [SPIRES].zbMATHCrossRefADSMathSciNetGoogle Scholar
  60. [60]
    L. Mason and D. Skinner, Gravity, Twistors and the MHV Formalism, arXiv:0808.3907 [SPIRES].
  61. [61]
    R. Boels, L. Mason and D. Skinner, From Twistor Actions to MHV Diagrams, Phys. Lett. B 648 (2007) 90 [hep-th/0702035] [SPIRES].ADSMathSciNetGoogle Scholar
  62. [62]
    A.P. Hodges, Scattering amplitudes for eight gauge fields, hep-th/0603101 [SPIRES].
  63. [63]
    A.P. Hodges, Twistor diagrams for all tree amplitudes in gauge theory: A helicity-independent formalism, hep-th/0512336 [SPIRES].
  64. [64]
    A.P. Hodges, Twistor diagram recursion for all gauge-theoretic tree amplitudes, hep-th/0503060 [SPIRES].
  65. [65]
    E. Witten, Perturbative gauge theory as a string theory in twistor space, Commun. Math. Phys. 252 (2004) 189 [hep-th/0312171] [SPIRES].zbMATHCrossRefADSMathSciNetGoogle Scholar
  66. [66]
    L. Mason and D. Skinner, Scattering Amplitudes and BCFW Recursion in Twistor Space, arXiv:0903.2083 [SPIRES].
  67. [67]
    E. Witten, An Interpretation of Classical Yang-Mills Theory, Phys. Lett. B 77 (1978) 394 [SPIRES].ADSGoogle Scholar
  68. [68]
    V.P. Nair, A current algebra for some gauge theory amplitudes, Phys. Lett. B 214 (1988) 215 [SPIRES].ADSGoogle Scholar
  69. [69]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Dual superconformal symmetry of scattering amplitudes in N = 4 super-Yang-Mills theory, Nucl. Phys. B 828 (2010) 317 [arXiv:0807.1095] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  70. [70]
    M. Bianchi, H. Elvang and D.Z. Freedman, Generating Tree Amplitudes in N = 4 SYM and N = 8 SG, JHEP 09 (2008) 063 [arXiv:0805.0757] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  71. [71]
    N. Arkani-Hamed, F. Cachazo and J. Kaplan, What is the Simplest Quantum Field Theory?, arXiv:0808.1446 [SPIRES].
  72. [72]
    F. Cachazo, P. Svrček, and E. Witten, Gauge theory amplitudes in twistor space and holomorphic anomaly, JHEP 10 (2004) 077 [hep-th/0409245] [SPIRES].CrossRefADSGoogle Scholar
  73. [73]
    R. Roiban, M. Spradlin and A. Volovich, On the tree-level S-matrix of Yang-Mills theory, Phys. Rev. D 70 (2004) 026009 [hep-th/0403190] [SPIRES].ADSMathSciNetGoogle Scholar
  74. [74]
    R. Britto, F. Cachazo and B. Feng, Generalized unitarity and one-loop amplitudes in N = 4 super-Yang-Mills, Nucl. Phys. B 725 (2005) 275 [hep-th/0412103] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  75. [75]
    A. Brandhuber, P. Heslop and G. Travaglini, A note on dual superconformal symmetry of the N = 4 super Yang-Mills S-matrix, Phys. Rev. D 78 (2008) 125005 [arXiv:0807.4097] [SPIRES].ADSMathSciNetGoogle Scholar
  76. [76]
    J.M. Drummond and J.M. Henn, All tree-level amplitudes in N = 4 SYM, JHEP 04 (2009) 018 [arXiv:0808.2475] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  77. [77]
    J.M. Drummond, M. Spradlin, A. Volovich and C. Wen, Tree-Level Amplitudes in N = 8 Supergravity, Phys. Rev. D 79 (2009) 105018 [arXiv:0901.2363] [SPIRES].ADSMathSciNetGoogle Scholar
  78. [78]
    M.B. Green, J.H. Schwarz and L. Brink, N=4 Yang-Mills and N = 8 Supergravity as Limits of String Theories, Nucl. Phys. B 198 (1982) 474 [SPIRES].CrossRefADSGoogle Scholar
  79. [79]
    Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One-Loop n-Point Gauge Theory Amplitudes, Unitarity and Collinear Limits, Nucl. Phys. B 425 (1994) 217 [hep-ph/9403226] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  80. [80]
    Z. Kunszt, A. Signer and Z. Trócsányi, Singular terms of helicity amplitudes at one loop in QCD and the soft limit of the cross-sections of multiparton processes, Nucl. Phys. B 420 (1994) 550 [hep-ph/9401294] [SPIRES].CrossRefADSGoogle Scholar
  81. [81]
    V.A. Smirnov, Evaluating Feynman Integrals, Springer Tracts in Modern Physics. Volume 211, Springer-Verlag, New York U.S.A. (2004).Google Scholar
  82. [82]
    D. Vaman and Y.-P. Yao, QCD recursion relations from the largest time equation, JHEP 04 (2006) 030 [hep-th/0512031] [SPIRES].CrossRefADSMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2010

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • N. Arkani-Hamed
    • 1
  • F. Cachazo
    • 2
  • C. Cheung
    • 3
    • 4
  • J. Kaplan
    • 5
  1. 1.School of Natural SciencesInstitute for Advanced StudyPrincetonU.S.A.
  2. 2.Perimeter Institute for Theoretical PhysicsWaterlooCanada
  3. 3.Berkeley Center for Theoretical PhysicsUniversity of CaliforniaBerkeleyU.S.A.
  4. 4.Theoretical Physics GroupLawrence Berkeley National LaboratoryBerkeleyU.S.A.
  5. 5.Theory GroupSLAC National Accelerator LaboratoryMenlo ParkU.S.A.

Personalised recommendations