Skip to main content
Log in

Emergent quantum near-criticality from baryonic black branes

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript


We find new black 3-brane solutions describing the “conifold gauge theory” at nonzero temperature and baryonic chemical potential. Of particular interest is the lowtemperature limit where we find a new kind of weakly curved near-horizon geometry; it is a warped product \(AdS_{2} \times \mathbb{R}^{3} \times T^{1,1} \) with warp factors that are powers of the logarithm of the AdS radius. Thus, our solution encodes a new type of emergent quantum near-criticality. We carry out some stability checks for our solutions. We also set up a consistent ansatz for baryonic black 2-branes of M-theory that are asymptotic to AdS 4 × Q 1,1,1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES].

    MATH  MathSciNet  ADS  Google Scholar 

  2. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  3. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].

    MATH  MathSciNet  Google Scholar 

  4. I.R. Klebanov and E. Witten, Superconformal field theory on threebranes at a Calabi-Yau singularity, Nucl. Phys. B 536 (1998) 199 [hep-th/9807080] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  5. S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  6. C.P. Herzog, Lectures on Holographic Superfluidity and Superconductivity, J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [SPIRES].

    Google Scholar 

  7. S.-S. Lee, A Non-Fermi Liquid from a Charged Black Hole: A CriticalFermi Ball, Phys. Rev. D 79 (2009) 086006 [arXiv:0809.3402] [SPIRES].

    ADS  Google Scholar 

  8. H. Liu, J. McGreevy and D. Vegh, Non-Fermi liquids from holography, arXiv:0903.2477 [SPIRES].

  9. M. Cubrovic, J. Zaanen and K. Schalm, String Theory, Quantum Phase Transitions and the Emergent Fermi-Liquid, Science 325 (2009) 439 [arXiv:0904.1993] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  10. T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality,Fermi surfaces and AdS 2, arXiv:0907.2694 [SPIRES].

  11. D. Yamada and L.G. Yaffe, Phase diagram of N = 4 super-Yang-Mills theory with Rsymmetry chemical potentials, JHEP 09 (2006) 027 [hep-th/0602074] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  12. D. Yamada, Fragmentation of Spinning Branes, Class. Quant. Grav. 25 (2008) 145006 [arXiv:0802.3508] [SPIRES].

    Article  ADS  Google Scholar 

  13. D. Yamada, Metastability of R-charged black holes, Class. Quant. Grav. 24 (2007) 3347 [hep-th/0701254] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  14. R.-G. Cai and K.-S. Soh, Critical behavior in the rotating D-branes, Mod. Phys. Lett. A 14 (1999) 1895 [hep-th/9812121] [SPIRES].

    Article  ADS  Google Scholar 

  15. A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Charged AdS black holes and catastrophic holography, Phys. Rev. D 60 (1999) 064018 [hep-th/9902170] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  16. M. Cvetič and S.S. Gubser, Phases of R-charged black holes, spinning branes and strongly coupled gauge theories, JHEP 04 (1999) 024 [hep-th/9902195] [SPIRES].

    Article  ADS  Google Scholar 

  17. S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [SPIRES].

    ADS  Google Scholar 

  18. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a Holographic Superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [SPIRES].

    Article  ADS  Google Scholar 

  19. S.S. Gubser and I.R. Klebanov, Baryons and domain walls in an N = 1 superconformal gauge theory, Phys. Rev. D 58 (1998) 125025 [hep-th/9808075] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  20. I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys. B 556 (1999) 89 [hep-th/9905104] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  21. C.P. Herzog, I.R. Klebanov and P. Ouyang, Remarks on the warped deformed conifold, hep-th/0108101 [SPIRES].

  22. I.R. Klebanov and A.A. Tseytlin, Gravity Duals of Supersymmetric SU(N) × SU(N +M) Gauge Theories, Nucl. Phys. B 578 (2000) 123 [hep-th/0002159] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  23. R. D’Auria, P. Fré and P. van Nieuwenhuizen, \(\mathcal{N} = 2 \) Matter coupled supergravity from compactification on a coset G/H possessing an additional Killing vector, Phys. Lett. B 136 (1984) 347 [SPIRES].

    ADS  Google Scholar 

  24. G.T. Horowitz and M.M. Roberts, Zero Temperature Limit of Holographic Superconductors, JHEP 11 (2009) 015 [arXiv:0908.3677] [SPIRES].

    Article  ADS  Google Scholar 

  25. I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: Duality cascades and χ SB -resolution of naked singularities, JHEP 08 (2000) 052 [hep-th/0007191] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  26. I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from Conformal Field Theory, JHEP 10 (2009) 079 [arXiv:0907.0151] [SPIRES].

    Article  ADS  Google Scholar 

  27. K. Goldstein, S. Kachru, S. Prakash and S.P. Trivedi, Holography of Charged Dilaton Black Holes, arXiv:0911.3586 [SPIRES].

  28. N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, The string landscape, black holes and gravity as the weakest force, JHEP 06 (2007) 060 [hep-th/0601001] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  29. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic Superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  30. F. Denef and S.A. Hartnoll, Landscape of superconducting membranes, Phys. Rev. D 79 (2009) 126008 [arXiv:0901.1160] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  31. S.S. Gubser, C.P. Herzog, S.S. Pufu and T. Tesileanu, Superconductors from Superstrings, Phys. Rev. Lett. 103 (2009) 141601 [arXiv:0907.3510] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  32. G. Gibbons and S.A. Hartnoll, A gravitational instability in higher dimensions, Phys. Rev. D 66 (2002) 064024 [hep-th/0206202] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  33. S. A. Hartnoll, J. Polchinski, E. Silverstein, and D. Tong, Towards strange metallic holography, arXiv:0912.1061 [SPIRES].

  34. N. J. Evans and J. Hockings, N = 4 super Yang Mills at finite density: The naked truth, JHEP 07 (2002) 070 [hep-th/0205082] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  35. D.N. Page and C.N. Pope, Which compactifications of D = 11 supergravity are stable?, Phys. Lett. B 144 (1984) 346 [SPIRES].

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Silviu S. Pufu.

Additional information

ArXiv ePrint: 0911.0400

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herzog, C.P., Klebanov, I.R., Pufu, S.S. et al. Emergent quantum near-criticality from baryonic black branes. J. High Energ. Phys. 2010, 93 (2010).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: