Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Journal of High Energy Physics
  3. Article
Freeze-in production of FIMP dark matter
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Dark matter freeze out during an early cosmological period of QCD confinement

27 July 2020

Dillon Berger, Seyda Ipek, … Michael Waterbury

Freeze-in dark matter from secret neutrino interactions

31 December 2020

Yong Du, Fei Huang, … Jiang-Hao Yu

Dark matter freeze-in from semi-production

03 June 2021

Andrzej Hryczuk & Maxim Laletin

Freezing-in a hot bath: resonances, medium effects and phase transitions

14 February 2022

Torsten Bringmann, Saniya Heeba, … Kristian Vangsnes

Dark freeze-out cogenesis

07 March 2022

Xiaoyong Chu, Yanou Cui, … Michael Shamma

Neutrino portal to FIMP dark matter with an early matter era

02 March 2021

Catarina Cosme, Maíra Dutra, … Litao Yang

Freezing-in hadrophilic dark matter at low reheating temperatures

23 January 2023

Prudhvi N. Bhattiprolu, Gilly Elor, … Aaron Pierce

Forbidden frozen-in dark matter

27 November 2019

L. Darmé, A. Hryczuk, … L. Roszkowski

Freezing in, heating up, and freezing out: predictive nonthermal dark matter and low-mass direct detection

22 October 2018

Gordan Krnjaic

Download PDF
  • Open Access
  • Published: 15 March 2010

Freeze-in production of FIMP dark matter

  • Lawrence J. Hall1,2,3,
  • Karsten Jedamzik4,
  • John March-Russell5 &
  • …
  • Stephen M. West6,7 

Journal of High Energy Physics volume 2010, Article number: 80 (2010) Cite this article

  • 1470 Accesses

  • 675 Citations

  • 3 Altmetric

  • Metrics details

Abstract

We propose an alternate, calculable mechanism of dark matter genesis, “thermal freeze-in”, involving a Feebly Interacting Massive Particle (FIMP) interacting so feebly with the thermal bath that it never attains thermal equilibrium. As with the conventional “thermal freeze-out” production mechanism, the relic abundance reflects a combination of initial thermal distributions together with particle masses and couplings that can be measured in the laboratory or astrophysically. The freeze-in yield is IR dominated by low temperatures near the FIMP mass and is independent of unknown UV physics, such as the reheat temperature after inflation. Moduli and modulinos of string theory compactifications that receive mass from weak-scale supersymmetry breaking provide implementations of the freeze-in mechanism, as do models that employ Dirac neutrino masses or GUT-scale-suppressed interactions. Experimental signals of freeze-in and FIMPs can be spectacular, including the production of new metastable coloured or charged particles at the LHC as well as the alteration of big bang nucleosynthesis.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. Ya.B. Zel'dovich, Magnetic model of universe, Zh. Eksp. Teor. Fiz. 48 (1965) 986 [Sov. Phys. JETP 21 (1965) 656].

    Google Scholar 

  2. Ya.B. Zel'dovich, L.B. Okun and S.B. Pikelner, Kварки: астрофизический и физико-химический аспекты, (Quarks: the astrophysical and physical-chemistry aspects) Usp. Fiz. Nauk. 84 (1965) 113.

    Google Scholar 

  3. H.-Y. Chiu, Symmetry between particle and anti-particle populations in the universe, Phys. Rev. Lett. 17 (1966) 712 [SPIRES].

    Article  ADS  Google Scholar 

  4. L. Hall, K. Jedamzik, J. March-Russell and S.M. West, Late decay signatures of freeze-in production of FIMP dark matter, OUTP-09 27P [UCB-PTH-09/33].

  5. E. Witten, Strong coupling expansion of Calabi-Yau compactification, Nucl. Phys. B 471 (1996) 135 [hep-th/9602070] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  6. T. Friedmann and E. Witten, Unification scale, proton decay and manifolds of G 2 holonomy, Adv. Theor. Math. Phys. 7 (2003) 577 [hep-th/0211269] [SPIRES].

    MATH  MathSciNet  Google Scholar 

  7. P. Svrček and E. Witten, Axions in string theory, JHEP 06 (2006) 051 [hep-th/0605206] [SPIRES].

    Article  ADS  Google Scholar 

  8. Y. Kawamura, Triplet-doublet splitting, proton stability and extra dimension, Prog. Theor. Phys. 105 (2001) 999 [hep-ph/0012125] [SPIRES].

    Article  ADS  Google Scholar 

  9. G. Altarelli and F. Feruglio, SU(5) grand unification in extra dimensions and proton decay, Phys. Lett. B 511 (2001) 257 [hep-ph/0102301] [SPIRES].

    ADS  Google Scholar 

  10. L.J. Hall and Y. Nomura, Gauge unification in higher dimensions, Phys. Rev. D 64 (2001) 055003 [hep-ph/0103125] [SPIRES].

    ADS  Google Scholar 

  11. A. Hebecker and J. March-Russell, A minimal S 1/(Z 2 × Z′2) orbifold GUT, Nucl. Phys. B 613 (2001) 3 [hep-ph/0106166] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  12. T. Asaka, K. Ishiwata and T. Moroi, Right-handed sneutrino as cold dark matter, Phys. Rev. D 73 (2006) 051301 [hep-ph/0512118] [SPIRES].

    ADS  Google Scholar 

  13. T. Asaka, K. Ishiwata and T. Moroi, Right-handed sneutrino as cold dark matter of the universe, Phys. Rev. D 75 (2007) 065001 [hep-ph/0612211] [SPIRES].

    ADS  Google Scholar 

  14. V. Page, Non-thermal right-handed sneutrino dark matter and the ΩDM/Ω b problem, JHEP 04 (2007) 021 [hep-ph/0701266] [SPIRES].

    Article  ADS  Google Scholar 

  15. A. de Gouvêa, S. Gopalakrishna and W. Porod, Stop decay into right-handed sneutrino LSP at hadron colliders, JHEP 11 (2006) 050 [hep-ph/0606296] [SPIRES].

    Article  Google Scholar 

  16. S. Gopalakrishna, A. de Gouvêa and W. Porod, Right-handed sneutrinos as nonthermal dark matter, JCAP 05 (2006) 005 [hep-ph/0602027] [SPIRES].

    ADS  Google Scholar 

  17. A. Kusenko, Sterile neutrinos, dark matter and the pulsar velocities in models with a Higgs singlet, Phys. Rev. Lett. 97 (2006) 241301 [hep-ph/0609081] [SPIRES].

    Article  ADS  Google Scholar 

  18. K. Petraki and A. Kusenko, Dark-matter sterile neutrinos in models with a gauge singlet in the Higgs sector, Phys. Rev. D 77 (2008) 065014 [arXiv:0711.4646] [SPIRES].

    ADS  Google Scholar 

  19. A. Kusenko, Sterile neutrinos: the dark side of the light fermions, Phys. Rept. 481 (2009) 1 [arXiv:0906.2968] [SPIRES].

    Article  ADS  Google Scholar 

  20. A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper and J. March-Russell, String axiverse, arXiv:0905.4720 [SPIRES].

  21. B. Holdom, Two U(1)'s and ϵ charge shifts, Phys. Lett. B 166 (1986) 196 [SPIRES].

    ADS  Google Scholar 

  22. A. Ibarra, A. Ringwald and C. Weniger, Hidden gauginos of an unbroken U(1): cosmological constraints and phenomenological prospects, JCAP 01 (2009) 003 [arXiv:0809.3196] [SPIRES].

    ADS  Google Scholar 

  23. A. Ibarra, A. Ringwald, D. Tran and C. Weniger, Cosmic rays from leptophilic dark matter decay via kinetic mixing, JCAP 08 (2009) 017 [arXiv:0903.3625] [SPIRES].

    ADS  Google Scholar 

  24. A. Arvanitaki, N. Craig, S. Dimopoulos, S. Dubovsky and J. March-Russell, String photini at the LHC, arXiv:0909.5440 [SPIRES].

  25. K.R. Dienes, C.F. Kolda and J. March-Russell, Kinetic mixing and the supersymmetric gauge hierarchy, Nucl. Phys. B 492 (1997) 104 [hep-ph/9610479] [SPIRES].

    ADS  Google Scholar 

  26. S.A. Abel, M.D. Goodsell, J. Jaeckel, V.V. Khoze and A. Ringwald, Kinetic mixing of the photon with hidden U(1)s in string phenomenology, JHEP 07 (2008) 124 [arXiv:0803.1449] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  27. K. Griest and M. Kamionkowski, Unitarity limits on the mass and radius of dark matter particles, Phys. Rev. Lett. 64 (1990) 615 [SPIRES].

    Article  ADS  Google Scholar 

  28. A.D. Linde, Inflation and axion cosmology, Phys. Lett. B 201 (1988) 437 [SPIRES].

    ADS  Google Scholar 

  29. F. Wilczek, A model of anthropic reasoning, addressing the dark to ordinary matter coincidence, hep-ph/0408167 [SPIRES].

  30. M. Tegmark, A. Aguirre, M. Rees and F. Wilczek, Dimensionless constants, cosmology and other dark matters, Phys. Rev. D 73 (2006) 023505 [astro-ph/0511774] [SPIRES].

    ADS  Google Scholar 

  31. CMS collabroation, Searching for stopped gluinos during beam-off periods at CMS, CMS-PAS-EXO-09-001.

  32. K. Jedamzik, Big Bang nucleosynthesis constraints on hadronically and electromagnetically decaying relic neutral particles, Phys. Rev. D 74 (2006) 103509 [hep-ph/0604251] [SPIRES].

    ADS  Google Scholar 

  33. PAMELA collaboration, O. Adriani et al., An anomalous positron abundance in cosmic rays with energies 1.5.100 GeV, Nature 458 (2009) 607 [arXiv:0810.4995] [SPIRES].

    Article  ADS  Google Scholar 

  34. O. Adriani et al., A new measurement of the antiproton-to-proton flux ratio up to 100 GeV in the cosmic radiation, Phys. Rev. Lett. 102 (2009) 051101 [arXiv:0810.4994] [SPIRES].

    Article  ADS  Google Scholar 

  35. The Fermi LAT collaboration, A.A. Abdo et al., Measurement of the cosmic ray e + plus e − spectrum from 20 GeV to 1 TeV with the Fermi Large Area Telescope, Phys. Rev. Lett. 102 (2009) 181101 [arXiv:0905.0025] [SPIRES].

    Article  ADS  Google Scholar 

  36. HESS collaboration, F. Aharonian et al., The H.E.S.S. survey of the inner galaxy in very high-energy gamma-rays, Astrophys. J. 636 (2006) 777 [astro-ph/0510397] [SPIRES].

    Article  ADS  Google Scholar 

  37. HESS collaboration, F. Aharonian, A search for a dark matter annihilation signal towards the Canis Major overdensity with H.E.S.S, arXiv:0809.3894 [SPIRES].

  38. H.E. S. S. C.F. Aharonian, Probing the ATIC peak in the cosmic-ray electron spectrum with H.E.S.S, Astron. Astrophys. 508 (2009) 561 [arXiv:0905.0105] [SPIRES].

    Article  ADS  Google Scholar 

  39. J. McDonald, Thermally generated gauge singlet scalars as self-interacting dark matter, Phys. Rev. Lett. 88 (2002) 091304 [hep-ph/0106249] [SPIRES].

    Article  ADS  Google Scholar 

  40. J. Edsjo and P. Gondolo, Neutralino relic density including coannihilations, Phys. Rev. D 56 (1997) 1879 [hep-ph/9704361] [SPIRES].

    ADS  Google Scholar 

  41. A. Arvanitaki et al., Astrophysical probes of unification, Phys. Rev. D 79 (2009) 105022 [arXiv:0812.2075] [SPIRES].

    ADS  Google Scholar 

  42. A. Arvanitaki et al., Decaying dark matter as a probe of unification and TeV spectroscopy, Phys. Rev. D 80 (2009) 055011 [arXiv:0904.2789] [SPIRES].

    ADS  Google Scholar 

  43. K.-Y. Choi and L. Roszkowski, E-WIMPs, AIP Conf. Proc. 805 (2006) 30 [hep-ph/0511003] [SPIRES].

    Article  ADS  Google Scholar 

  44. J. McDonald and N. Sahu, keV warm dark matter via the supersymmetric Higgs portal, Phys. Rev. D 79 (2009) 103523 [arXiv:0809.0247] [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Physics, University of California, Berkeley, CA, 94720, U.S.A.

    Lawrence J. Hall

  2. Theoretical Physics Group, LBNL, Berkeley, CA, 94720, U.S.A.

    Lawrence J. Hall

  3. Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, 277-8568, Japan

    Lawrence J. Hall

  4. Laboratoire de Physique Theorique et Astroparticules, UMR5207-CNRS, Universite Montpellier II, F-34095, Montpellier, France

    Karsten Jedamzik

  5. Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Rd., Oxford, OX1 3NP, U.K.

    John March-Russell

  6. Royal Holloway, University of London, Egham, TW20 0EX, U.K.

    Stephen M. West

  7. Rutherford Appleton Laboratory, Chilton, Didcot, OX11 0QX, U.K.

    Stephen M. West

Authors
  1. Lawrence J. Hall
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Karsten Jedamzik
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. John March-Russell
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Stephen M. West
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Stephen M. West.

Additional information

ArXiv ePrint: 0911.1120

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Hall, L.J., Jedamzik, K., March-Russell, J. et al. Freeze-in production of FIMP dark matter. J. High Energ. Phys. 2010, 80 (2010). https://doi.org/10.1007/JHEP03(2010)080

Download citation

  • Received: 08 December 2009

  • Accepted: 15 February 2010

  • Published: 15 March 2010

  • DOI: https://doi.org/10.1007/JHEP03(2010)080

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Cosmology of Theories beyond the SM
  • Beyond Standard Model
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.