Abstract
We propose an alternate, calculable mechanism of dark matter genesis, “thermal freeze-in”, involving a Feebly Interacting Massive Particle (FIMP) interacting so feebly with the thermal bath that it never attains thermal equilibrium. As with the conventional “thermal freeze-out” production mechanism, the relic abundance reflects a combination of initial thermal distributions together with particle masses and couplings that can be measured in the laboratory or astrophysically. The freeze-in yield is IR dominated by low temperatures near the FIMP mass and is independent of unknown UV physics, such as the reheat temperature after inflation. Moduli and modulinos of string theory compactifications that receive mass from weak-scale supersymmetry breaking provide implementations of the freeze-in mechanism, as do models that employ Dirac neutrino masses or GUT-scale-suppressed interactions. Experimental signals of freeze-in and FIMPs can be spectacular, including the production of new metastable coloured or charged particles at the LHC as well as the alteration of big bang nucleosynthesis.
References
Ya.B. Zel'dovich, Magnetic model of universe, Zh. Eksp. Teor. Fiz. 48 (1965) 986 [Sov. Phys. JETP 21 (1965) 656].
Ya.B. Zel'dovich, L.B. Okun and S.B. Pikelner, Kварки: астрофизический и физико-химический аспекты, (Quarks: the astrophysical and physical-chemistry aspects) Usp. Fiz. Nauk. 84 (1965) 113.
H.-Y. Chiu, Symmetry between particle and anti-particle populations in the universe, Phys. Rev. Lett. 17 (1966) 712 [SPIRES].
L. Hall, K. Jedamzik, J. March-Russell and S.M. West, Late decay signatures of freeze-in production of FIMP dark matter, OUTP-09 27P [UCB-PTH-09/33].
E. Witten, Strong coupling expansion of Calabi-Yau compactification, Nucl. Phys. B 471 (1996) 135 [hep-th/9602070] [SPIRES].
T. Friedmann and E. Witten, Unification scale, proton decay and manifolds of G 2 holonomy, Adv. Theor. Math. Phys. 7 (2003) 577 [hep-th/0211269] [SPIRES].
P. Svrček and E. Witten, Axions in string theory, JHEP 06 (2006) 051 [hep-th/0605206] [SPIRES].
Y. Kawamura, Triplet-doublet splitting, proton stability and extra dimension, Prog. Theor. Phys. 105 (2001) 999 [hep-ph/0012125] [SPIRES].
G. Altarelli and F. Feruglio, SU(5) grand unification in extra dimensions and proton decay, Phys. Lett. B 511 (2001) 257 [hep-ph/0102301] [SPIRES].
L.J. Hall and Y. Nomura, Gauge unification in higher dimensions, Phys. Rev. D 64 (2001) 055003 [hep-ph/0103125] [SPIRES].
A. Hebecker and J. March-Russell, A minimal S 1/(Z 2 × Z′2) orbifold GUT, Nucl. Phys. B 613 (2001) 3 [hep-ph/0106166] [SPIRES].
T. Asaka, K. Ishiwata and T. Moroi, Right-handed sneutrino as cold dark matter, Phys. Rev. D 73 (2006) 051301 [hep-ph/0512118] [SPIRES].
T. Asaka, K. Ishiwata and T. Moroi, Right-handed sneutrino as cold dark matter of the universe, Phys. Rev. D 75 (2007) 065001 [hep-ph/0612211] [SPIRES].
V. Page, Non-thermal right-handed sneutrino dark matter and the ΩDM/Ω b problem, JHEP 04 (2007) 021 [hep-ph/0701266] [SPIRES].
A. de Gouvêa, S. Gopalakrishna and W. Porod, Stop decay into right-handed sneutrino LSP at hadron colliders, JHEP 11 (2006) 050 [hep-ph/0606296] [SPIRES].
S. Gopalakrishna, A. de Gouvêa and W. Porod, Right-handed sneutrinos as nonthermal dark matter, JCAP 05 (2006) 005 [hep-ph/0602027] [SPIRES].
A. Kusenko, Sterile neutrinos, dark matter and the pulsar velocities in models with a Higgs singlet, Phys. Rev. Lett. 97 (2006) 241301 [hep-ph/0609081] [SPIRES].
K. Petraki and A. Kusenko, Dark-matter sterile neutrinos in models with a gauge singlet in the Higgs sector, Phys. Rev. D 77 (2008) 065014 [arXiv:0711.4646] [SPIRES].
A. Kusenko, Sterile neutrinos: the dark side of the light fermions, Phys. Rept. 481 (2009) 1 [arXiv:0906.2968] [SPIRES].
A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper and J. March-Russell, String axiverse, arXiv:0905.4720 [SPIRES].
B. Holdom, Two U(1)'s and ϵ charge shifts, Phys. Lett. B 166 (1986) 196 [SPIRES].
A. Ibarra, A. Ringwald and C. Weniger, Hidden gauginos of an unbroken U(1): cosmological constraints and phenomenological prospects, JCAP 01 (2009) 003 [arXiv:0809.3196] [SPIRES].
A. Ibarra, A. Ringwald, D. Tran and C. Weniger, Cosmic rays from leptophilic dark matter decay via kinetic mixing, JCAP 08 (2009) 017 [arXiv:0903.3625] [SPIRES].
A. Arvanitaki, N. Craig, S. Dimopoulos, S. Dubovsky and J. March-Russell, String photini at the LHC, arXiv:0909.5440 [SPIRES].
K.R. Dienes, C.F. Kolda and J. March-Russell, Kinetic mixing and the supersymmetric gauge hierarchy, Nucl. Phys. B 492 (1997) 104 [hep-ph/9610479] [SPIRES].
S.A. Abel, M.D. Goodsell, J. Jaeckel, V.V. Khoze and A. Ringwald, Kinetic mixing of the photon with hidden U(1)s in string phenomenology, JHEP 07 (2008) 124 [arXiv:0803.1449] [SPIRES].
K. Griest and M. Kamionkowski, Unitarity limits on the mass and radius of dark matter particles, Phys. Rev. Lett. 64 (1990) 615 [SPIRES].
A.D. Linde, Inflation and axion cosmology, Phys. Lett. B 201 (1988) 437 [SPIRES].
F. Wilczek, A model of anthropic reasoning, addressing the dark to ordinary matter coincidence, hep-ph/0408167 [SPIRES].
M. Tegmark, A. Aguirre, M. Rees and F. Wilczek, Dimensionless constants, cosmology and other dark matters, Phys. Rev. D 73 (2006) 023505 [astro-ph/0511774] [SPIRES].
CMS collabroation, Searching for stopped gluinos during beam-off periods at CMS, CMS-PAS-EXO-09-001.
K. Jedamzik, Big Bang nucleosynthesis constraints on hadronically and electromagnetically decaying relic neutral particles, Phys. Rev. D 74 (2006) 103509 [hep-ph/0604251] [SPIRES].
PAMELA collaboration, O. Adriani et al., An anomalous positron abundance in cosmic rays with energies 1.5.100 GeV, Nature 458 (2009) 607 [arXiv:0810.4995] [SPIRES].
O. Adriani et al., A new measurement of the antiproton-to-proton flux ratio up to 100 GeV in the cosmic radiation, Phys. Rev. Lett. 102 (2009) 051101 [arXiv:0810.4994] [SPIRES].
The Fermi LAT collaboration, A.A. Abdo et al., Measurement of the cosmic ray e + plus e − spectrum from 20 GeV to 1 TeV with the Fermi Large Area Telescope, Phys. Rev. Lett. 102 (2009) 181101 [arXiv:0905.0025] [SPIRES].
HESS collaboration, F. Aharonian et al., The H.E.S.S. survey of the inner galaxy in very high-energy gamma-rays, Astrophys. J. 636 (2006) 777 [astro-ph/0510397] [SPIRES].
HESS collaboration, F. Aharonian, A search for a dark matter annihilation signal towards the Canis Major overdensity with H.E.S.S, arXiv:0809.3894 [SPIRES].
H.E. S. S. C.F. Aharonian, Probing the ATIC peak in the cosmic-ray electron spectrum with H.E.S.S, Astron. Astrophys. 508 (2009) 561 [arXiv:0905.0105] [SPIRES].
J. McDonald, Thermally generated gauge singlet scalars as self-interacting dark matter, Phys. Rev. Lett. 88 (2002) 091304 [hep-ph/0106249] [SPIRES].
J. Edsjo and P. Gondolo, Neutralino relic density including coannihilations, Phys. Rev. D 56 (1997) 1879 [hep-ph/9704361] [SPIRES].
A. Arvanitaki et al., Astrophysical probes of unification, Phys. Rev. D 79 (2009) 105022 [arXiv:0812.2075] [SPIRES].
A. Arvanitaki et al., Decaying dark matter as a probe of unification and TeV spectroscopy, Phys. Rev. D 80 (2009) 055011 [arXiv:0904.2789] [SPIRES].
K.-Y. Choi and L. Roszkowski, E-WIMPs, AIP Conf. Proc. 805 (2006) 30 [hep-ph/0511003] [SPIRES].
J. McDonald and N. Sahu, keV warm dark matter via the supersymmetric Higgs portal, Phys. Rev. D 79 (2009) 103523 [arXiv:0809.0247] [SPIRES].
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 0911.1120
Rights and permissions
Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Hall, L.J., Jedamzik, K., March-Russell, J. et al. Freeze-in production of FIMP dark matter. J. High Energ. Phys. 2010, 80 (2010). https://doi.org/10.1007/JHEP03(2010)080
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP03(2010)080
Keywords
- Cosmology of Theories beyond the SM
- Beyond Standard Model