Four generations: SUSY and SUSY breaking

  • Rohini M. Godbole
  • Sudhir K. Vempati
  • Akın Wingerter


We revisit four generations within the context of supersymmetry. We compute the perturbativity limits for the fourth generation Yukawa couplings and show that if the masses of the fourth generation lie within reasonable limits of their present experimental lower bounds, it is possible to have perturbativity only up to scales around 1000 TeV. Such low scales are ideally suited to incorporate gauge mediated supersymmetry breaking, where the mediation scale can be as low as 10-20 TeV. The minimal messenger model, however, is highly constrained. While lack of electroweak symmetry breaking rules out a large part of the parameter space, a small region exists, where the fourth generation stau is tachyonic. General gauge mediation with its broader set of boundary conditions is better suited to accommodate the fourth generation.


Supersymmetry Phenomenology 


  1. [1]
    DØ collaboration, V.M. Abazov et al., Observation of Single Top-Quark Production, Phys. Rev. Lett. 103 (2009) 092001 [arXiv:0903.0850] [SPIRES].CrossRefADSGoogle Scholar
  2. [2]
    CDF collaboration, T. Aaltonen et al., First Observation of Electroweak Single Top Quark Production, Phys. Rev. Lett. 103 (2009) 092002 [arXiv:0903.0885] [SPIRES].CrossRefGoogle Scholar
  3. [3]
    J. Alwall et al., Is V(tb) = 1?, Eur. Phys. J. C 49 (2007) 791 [hep-ph/0607115] [SPIRES].CrossRefADSGoogle Scholar
  4. [4]
    G.D. Kribs, T. Plehn, M. Spannowsky and T.M.P. Tait, Four generations and Higgs physics, Phys. Rev. D 76 (2007) 075016 [arXiv:0706.3718] [SPIRES].ADSGoogle Scholar
  5. [5]
    M. Bobrowski, A. Lenz, J. Riedl and J. Rohrwild, How much space is left for a new family of fermions?, Phys. Rev. D 79 (2009) 113006 [arXiv:0902.4883] [SPIRES].ADSGoogle Scholar
  6. [6]
    M.S. Chanowitz, Bounding CKM Mixing with a Fourth Family, Phys. Rev. D 79 (2009) 113008 [arXiv:0904.3570] [SPIRES].ADSGoogle Scholar
  7. [7]
    B. Holdom et al., Four Statements about the Fourth Generation, PMC Phys. A 3 (2009) 4 [arXiv:0904.4698] [SPIRES].CrossRefGoogle Scholar
  8. [8]
    V.A. Novikov, A.N. Rozanov and M.I. Vysotsky, Once more on extra quark-lepton generations and precision measurements, arXiv:0904.4570 [SPIRES].
  9. [9]
    P.Q. Hung and M. Sher, Experimental constraints on fourth generation quark masses, Phys. Rev. D 77 (2008) 037302 [arXiv:0711.4353] [SPIRES].ADSGoogle Scholar
  10. [10]
    P.H. Frampton, P.Q. Hung and M. Sher, Quarks and leptons beyond the third generation, Phys. Rept. 330 (2000) 263 [hep-ph/9903387] [SPIRES].CrossRefADSGoogle Scholar
  11. [11]
    H.B. Nielsen, A.V. Novikov, V.A. Novikov and M.I. Vysotsky, Higgs potential bounds on extra quark - lepton generations, Phys. Lett. B 374 (1996) 127 [hep-ph/9511340] [SPIRES].ADSGoogle Scholar
  12. [12]
    Y.F. Pirogov and O.V. Zenin, Two-loop renormalization group restrictions on the standard model and the fourth chiral family, Eur. Phys. J. C 10 (1999) 629 [hep-ph/9808396] [SPIRES].CrossRefADSGoogle Scholar
  13. [13]
    H. Goldberg, The fourth generation and N = 1 supergravity, Phys. Lett. B 165 (1985) 292 [SPIRES].ADSGoogle Scholar
  14. [14]
    K. Enqvist, D.V. Nanopoulos and F. Zwirner, The fourth generation in supergravity, Phys. Lett. B 164 (1985) 321 [SPIRES].ADSGoogle Scholar
  15. [15]
    R.L. Arnowitt and P. Nath, Fourth generation and nucleon decay in supersymmetric theories, Phys. Rev. D 36 (1987) 3423 [SPIRES].ADSGoogle Scholar
  16. [16]
    M. Drees, K. Enqvist and D.V. Nanopoulos, No future for the fourth generation?, Nucl. Phys. B 294 (1987) 1 [SPIRES].CrossRefADSGoogle Scholar
  17. [17]
    J.F. Gunion, D.W. McKay and H. Pois, Gauge coupling unification and the minimal SUSY model: a Fourth generation below the top?, Phys. Lett. B 334 (1994) 339 [hep-ph/9406249] [SPIRES].ADSGoogle Scholar
  18. [18]
    J.F. Gunion, D.W. McKay and H. Pois, A Minimal four family supergravity model, Phys. Rev. D 53 (1996) 1616 [hep-ph/9507323] [SPIRES].ADSGoogle Scholar
  19. [19]
    J.E. Dubicki and C.D. Froggatt, Supersymmetric grand unification with a fourth generation?, Phys. Lett. B 567 (2003) 46 [hep-ph/0305007] [SPIRES].ADSGoogle Scholar
  20. [20]
    Z. Murdock, S. Nandi and Z. Tavartkiladze, Perturbativity and a Fourth Generation in the MSSM, Phys. Lett. B 668 (2008) 303 [arXiv:0806.2064] [SPIRES].ADSGoogle Scholar
  21. [21]
    T.Ibrahim and P.Nath, An MSSM Extension with a Mirror Fourth Generation, Neutrino Magnetic Moments and LHC Signatures, Phys. Rev. D 78 (2008) 075013 [arXiv:0806.3880] [SPIRES].ADSGoogle Scholar
  22. [22]
    P.Q. Hung, Minimal SU(5) resuscitated by long-lived quarks and leptons, Phys. Rev. Lett. 80 (1998) 3000 [hep-ph/9712338] [SPIRES].CrossRefADSGoogle Scholar
  23. [23]
    W.-S. Hou, CP Violation and Baryogenesis from New Heavy Quarks, Chin. J. Phys. 47 (2009) 134 [arXiv:0803.1234] [SPIRES].Google Scholar
  24. [24]
    R. Fok and G.D. Kribs, Four Generations, the Electroweak Phase Transition and Supersymmetry, Phys. Rev. D 78 (2008) 075023 [arXiv:0803.4207] [SPIRES].ADSGoogle Scholar
  25. [25]
    Y. Kikukawa, M. Kohda and J. Yasuda, The strongly coupled fourth family and a first-order electroweak phase transition (I) quark sector, Prog. Theor. Phys. 122 (2009) 401 [arXiv:0901.1962] [SPIRES].MATHCrossRefADSGoogle Scholar
  26. [26]
    S.P. Martin, Extra vector-like matter and the lightest Higgs scalar boson mass in low-energy supersymmetry, arXiv:0910.2732 [SPIRES].
  27. [27]
    P.W. Graham, A. Ismail, S. Rajendran and P. Saraswat, A Little Solution to the Little Hierarchy Problem: A Vector-like Generation, arXiv:0910.3020 [SPIRES].
  28. [28]
    E. De Pree, G. Marshall and M. Sher, The Fourth Generation t-prime in Extensions of the Standard Model, Phys. Rev. D 80 (2009) 037301 [arXiv:0906.4500] [SPIRES].ADSGoogle Scholar
  29. [29]
    G. Burdman and L. Da Rold, Electroweak Symmetry Breaking from a Holographic Fourth Generation, JHEP 12 (2007) 086 [arXiv:0710.0623] [SPIRES].CrossRefADSGoogle Scholar
  30. [30]
    A. Borstnik Bracic, M. Breskvar, D. Lukman and N.S. Mankoc Borstnik, A new understanding of fermion masses from the unified theory of spins and charges, hep-ph/0606224 [SPIRES].
  31. [31]
    A. Borstnik Bracic, M. Breskvar, D. Lukman and N.S. Mankoc Borstnik, A new understanding of fermion masses from the unified theory of spins and charges, hep-ph/0606224 [SPIRES].ADSGoogle Scholar
  32. [32]
    M.T. Frandsen, I. Masina and F. Sannino, Fourth Lepton Family is Natural in Technicolor, arXiv:0905.1331 [SPIRES].
  33. [33]
    O. Antipin, M. Heikinheimo and K. Tuominen, Natural fourth generation of leptons, JHEP 10 (2009) 018 [arXiv:0905.0622] [SPIRES].CrossRefGoogle Scholar
  34. [34]
    B. Holdom, Heavy quarks and electroweak symmetry breaking, Phys. Rev. Lett. 57 (1986) 2496 [SPIRES].CrossRefADSGoogle Scholar
  35. [35]
    C.T. Hill, M.A. Luty and E.A. Paschos, Electroweak symmetry breaking by fourth generation condensates and the neutrino spectrum, Phys. Rev. D 43 (1991) 3011 [SPIRES].ADSGoogle Scholar
  36. [36]
    S.F. King, Is electroweak symmetry broken by a fourth family of quarks?, Phys. Lett. B 234 (1990) 108 [SPIRES].ADSGoogle Scholar
  37. [37]
    G. Kramer and I. Montvay, Radiative Quark Mass Generation And A Fourth Quark Family, Z. Phys. C 11 (1981) 159[SPIRES].ADSGoogle Scholar
  38. [38]
    A.L. Kagan, Radiative quark mass and mixing hierarchies from supersymmetric models with a fourth mirror family, Phys. Rev. D 40 (1989) 173 [SPIRES].ADSGoogle Scholar
  39. [39]
    M. Sher and Y. Yuan, Cosmological bounds on the lifetime of a fourth generation charged lepton, Phys. Lett. B 285 (1992) 336 [SPIRES].ADSGoogle Scholar
  40. [40]
    H. Fritzsch, Light neutrinos, nonuniversality of the leptonic weak interaction and a fourth massive generation, Phys. Lett. B 289 (1992) 92 [SPIRES].ADSGoogle Scholar
  41. [41]
    C.T. Hill and E.A. Paschos, A Naturally Heavy Fourth Generation Neutrino, Phys. Lett. B 241 (1990) 96 [SPIRES].ADSGoogle Scholar
  42. [42]
    S.F. King, A Minimal four family model, Phys. Lett. B 281 (1992) 295 [SPIRES].ADSGoogle Scholar
  43. [43]
    K.S. Babu, S. Nandi and Z. Tavartkiladze, New Mechanism for Neutrino Mass Generation and Triply Charged Higgs Bosons at the LHC, Phys. Rev. D 80 (2009) 071702 [arXiv:0905.2710] [SPIRES].Google Scholar
  44. [44]
    M. Drees, K. Enqvist and D.V. Nanopoulos, The fourth generation in superstring models, Phys. Lett. B 189 (1987) 321 [SPIRES].ADSGoogle Scholar
  45. [45]
    B.C. Allanach, SOFTSUSY: A C++ program for calculating supersymmetric spectra, Comput. Phys. Commun. 143 (2002) 305 [hep-ph/0104145] [SPIRES].MATHCrossRefADSGoogle Scholar
  46. [46]
    Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES].ADSGoogle Scholar
  47. [47]
    CDF collaboration, T. Aaltonen et al., Search for Heavy Top-like Quarks Using Lepton Plus Jets Events in 1.96 TeV XXX Collisions, Phys. Rev. Lett. 100 (2008) 161803 [arXiv:0801.3877] [SPIRES].CrossRefADSGoogle Scholar
  48. [48]
    DØ collaboration, S. Abachi et al., Top quark search with the DØ 1992 - 1993 data sample, Phys. Rev. D 52 (1995) 4877 [SPIRES].ADSGoogle Scholar
  49. [49]
    CDF collaboration, T. Aaltonen et al., Search for New Particles Leading to Z+ jets Final States in XXX Collisions at XXX, Phys. Rev. D 76 (2007) 072006 [arXiv:0706.3264] [SPIRES].ADSGoogle Scholar
  50. [50]
    CDF collaboration, D.E. Acosta et al., Search for long-lived charged massive particles in XXX collisions at XXX, Phys. Rev. Lett. 90 (2003) 131801 [hep-ex/0211064] [SPIRES].CrossRefADSGoogle Scholar
  51. [51]
    L3 collaboration, P. Achard et al., Search for heavy neutral and charged leptons in e + e annihilation at LEP, Phys. Lett. B 517 (2001) 75 [hep-ex/0107015] [SPIRES].ADSGoogle Scholar
  52. [52]
    DELPHI collaboration, P. Abreu et al., Searches for heavy neutrinos from Z decays, Phys. Lett. B 274 (1992) 230 [SPIRES].ADSGoogle Scholar
  53. [53]
    R. Rattazzi and U. Sarid, The Unified minimal supersymmetric model with large Yukawa couplings, Phys. Rev. D 53 (1996) 1553 [hep-ph/9505428] [SPIRES].ADSGoogle Scholar
  54. [54]
    B. Ananthanarayan, G. Lazarides and Q. Shafi, Top mass prediction from supersymmetric GUTs, Phys. Rev. D 44 (1991) 1613 [SPIRES].ADSGoogle Scholar
  55. [55]
    S. Litsey and M. Sher, Higgs Masses in the Four Generation MSSM, Phys. Rev. D 80 (2009) 057701 [arXiv:0908.0502] [SPIRES].Google Scholar
  56. [56]
    G.F. Giudice and R. Rattazzi, Theories with gauge-mediated supersymmetry breaking, Phys. Rept. 322 (1999) 419 [hep-ph/9801271] [SPIRES].CrossRefADSGoogle Scholar
  57. [57]
    M. Drees, R. Godbole, and P. Roy, Theory and phenomenology of sparticles: An account of four-dimensional N=1 supersymmetry in high energy physics, World Scientific Publishing, Hackensack U.S.A. (2004).Google Scholar
  58. [58]
    F. Borzumati, On the minimal messenger model, hep-ph/9702307 [SPIRES].
  59. [59]
    P. Meade, N. Seiberg and D. Shih, General Gauge Mediation, Prog. Theor. Phys. Suppl. 177 (2009) 143 [arXiv:0801.3278] [SPIRES].MATHCrossRefADSGoogle Scholar
  60. [60]
    S. Abel, M.J. Dolan, J. Jaeckel and V.V. Khoze, Phenomenology of Pure General Gauge Mediation, JHEP 12 (2009) 001 [arXiv:0910.2674] [SPIRES].CrossRefGoogle Scholar
  61. [61]
    M.E. Machacek and M.T. Vaughn, Two Loop Renormalization Group Equations in a General Quantum Field Theory. 1. Wave Function Renormalization, Nucl. Phys. B 222 (1983) 83 [SPIRES].CrossRefADSGoogle Scholar
  62. [62]
    M.E. Machacek and M.T. Vaughn, Two Loop Renormalization Group Equations in a General Quantum Field Theory. 2. Yukawa Couplings, Nucl. Phys. B 236 (1984) 221 [SPIRES].CrossRefADSGoogle Scholar
  63. [63]
    N.K. Falck, Renormalization Group Equations for Softly Broken Supersymmetry: The Most General Case, Z. Phys. C 30 (1986) 247 [SPIRES].ADSGoogle Scholar
  64. [64]
    J.E. Bjorkman and D.R.T. Jones, The unification mass, sin2 θ w and m b/m τ in nonminimal supersymmetric SU(5), Nucl. Phys. B 259 (1985) 533 [SPIRES].CrossRefADSGoogle Scholar
  65. [65]
    J. Bagger, S. Dimopoulos and E. Masso, Renormalization group constraints in supersymmetric theories, Phys. Rev. Lett. 55 (1985) 920 [SPIRES].CrossRefADSGoogle Scholar
  66. [66]
    M. Cvetič and C.R. Preitschopf, Heavy families and N = 1 supergravity within the standard model, Nucl. Phys. B 272 (1986) 490 [SPIRES].CrossRefADSGoogle Scholar
  67. [67]
    M. Tanimoto, Y. Suetake and K. Senba, Fritzsch mass matrix with the fourth generation and the renormalization group equations, Phys. Rev. D 36 (1987) 2119 [SPIRES].ADSGoogle Scholar
  68. [68]
    D.J. Castano, E.J. Piard and P. Ramond, Renormalization group study of the Standard Model and its extensions. 2. The Minimal supersymmetric Standard Model, Phys. Rev. D 49 (1994) 4882 [hep-ph/9308335] [SPIRES].ADSGoogle Scholar
  69. [69]
    L.E. Ibáñez and C. Lopez, N = 1 Supergravity, the Weak Scale and the Low-Energy Particle Spectrum, Nucl. Phys. B 233 (1984) 511 [SPIRES].CrossRefADSGoogle Scholar
  70. [70]
    R. Brun and F. Rademakers, ROOT: An object oriented data analysis framework, Nucl. Instrum. Meth. A 389 (1997) 81 [SPIRES].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  • Rohini M. Godbole
    • 1
  • Sudhir K. Vempati
    • 1
  • Akın Wingerter
    • 1
  1. 1.Centre for High Energy PhysicsIndian Institute of ScienceBangaloreIndia

Personalised recommendations