Skip to main content

Advertisement

SpringerLink
Phenomenology of jet angularities at the LHC
Download PDF
Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 21 March 2022

Phenomenology of jet angularities at the LHC

  • Daniel Reichelt  ORCID: orcid.org/0000-0003-3077-52561,2,
  • Simone Caletti3,
  • Oleh Fedkevych3,
  • Simone Marzani3,
  • Steffen Schumann2 &
  • …
  • Gregory Soyez4 

Journal of High Energy Physics volume 2022, Article number: 131 (2022) Cite this article

  • 85 Accesses

  • 3 Citations

  • 1 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We compute resummed and matched predictions for jet angularities in hadronic dijet and Z+jet events with and without grooming the candidate jets using the SoftDrop technique. Our theoretical predictions also account for non-perturbative corrections from the underlying event and hadronisation through parton-to-hadron level transfer matrices extracted from dedicated Monte Carlo simulations with Sherpa. Thanks to this approach we can account for non-perturbative migration effects in both the angularities and the jet transverse momentum. We compare our predictions against recent measurements from the CMS experiment. This allows us to test the description of quark- and gluon-jet enriched phase-space regions separately. We supplement our study with Sherpa results based on the matching of NLO QCD matrix elements with the parton shower. Both theoretical predictions offer a good description of the data, within the experimental and theoretical uncertainties. The latter are however sizeable, motivating higher-accuracy calculations.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. D. Britzger, K. Rabbertz, D. Savoiu, G. Sieber and M. Wobisch, Determination of the strong coupling constant using inclusive jet cross section data from multiple experiments, Eur. Phys. J. C 79 (2019) 68 [arXiv:1712.00480] [INSPIRE].

    Article  ADS  Google Scholar 

  2. CMS collaboration, Measurement of the Ratio of the Inclusive 3-Jet Cross Section to the Inclusive 2-Jet Cross Section in pp Collisions at \( \sqrt{s} \) = 7 TeV and First Determination of the Strong Coupling Constant in the TeV Range, Eur. Phys. J. C 73 (2013) 2604 [arXiv:1304.7498] [INSPIRE].

  3. ATLAS collaboration, Determination of the strong coupling constant αs from transverse energy-energy correlations in multijet events at \( \sqrt{s} \) = 8 TeV using the ATLAS detector, Eur. Phys. J. C 77 (2017) 872 [arXiv:1707.02562] [INSPIRE].

  4. ATLAS collaboration, Measurement of transverse energy-energy correlations in multi-jet events in pp collisions at \( \sqrt{s} \) = 7 TeV using the ATLAS detector and determination of the strong coupling constant αs(mZ), Phys. Lett. B 750 (2015) 427 [arXiv:1508.01579] [INSPIRE].

  5. CMS collaboration, Measurement of the inclusive 3-jet production differential cross section in proton-proton collisions at 7 TeV and determination of the strong coupling constant in the TeV range, Eur. Phys. J. C 75 (2015) 186 [arXiv:1412.1633] [INSPIRE].

  6. ATLAS collaboration, Determination of the parton distribution functions of the proton from ATLAS measurements of differential W± and Z boson production in association with jets, JHEP 07 (2021) 223 [arXiv:2101.05095] [INSPIRE].

  7. ATLAS collaboration, Measurement of the inclusive jet cross section in pp collisions at \( \sqrt{s} \) = 2.76 TeV and comparison to the inclusive jet cross section at \( \sqrt{s} \) = 7 TeV using the ATLAS detector, Eur. Phys. J. C 73 (2013) 2509 [arXiv:1304.4739] [INSPIRE].

  8. CMS collaboration, Constraints on parton distribution functions and extraction of the strong coupling constant from the inclusive jet cross section in pp collisions at \( \sqrt{s} \) = 7 TeV, Eur. Phys. J. C 75 (2015) 288 [arXiv:1410.6765] [INSPIRE].

  9. CMS collaboration, Measurement and QCD analysis of double-differential inclusive jet cross sections in pp collisions at \( \sqrt{s} \) = 8 TeV and cross section ratios to 2.76 and 7 TeV, JHEP 03 (2017) 156 [arXiv:1609.05331] [INSPIRE].

  10. R. D. Ball et al., The Path to Proton Structure at One-Percent Accuracy, arXiv:2109.02653 [INSPIRE].

  11. S. Bailey, T. Cridge, L. A. Harland-Lang, A. D. Martin and R. S. Thorne, Parton distributions from LHC, HERA, Tevatron and fixed target data: MSHT20 PDFs, Eur. Phys. J. C 81 (2021) 341 [arXiv:2012.04684] [INSPIRE].

    Article  ADS  Google Scholar 

  12. R. Abdul Khalek et al., Phenomenology of NNLO jet production at the LHC and its impact on parton distributions, Eur. Phys. J. C 80 (2020) 797 [arXiv:2005.11327] [INSPIRE].

    Article  ADS  Google Scholar 

  13. L. A. Harland-Lang, A. D. Martin and R. S. Thorne, The Impact of LHC Jet Data on the MMHT PDF Fit at NNLO, Eur. Phys. J. C 78 (2018) 248 [arXiv:1711.05757] [INSPIRE].

    Article  ADS  Google Scholar 

  14. J. Pumplin, J. Huston, H. L. Lai, P. M. Nadolsky, W.-K. Tung and C. P. Yuan, Collider Inclusive Jet Data and the Gluon Distribution, Phys. Rev. D 80 (2009) 014019 [arXiv:0904.2424] [INSPIRE].

    Article  ADS  Google Scholar 

  15. B. J. A. Watt, P. Motylinski and R. S. Thorne, The Effect of LHC Jet Data on MSTW PDFs, Eur. Phys. J. C 74 (2014) 2934 [arXiv:1311.5703] [INSPIRE].

    Article  ADS  Google Scholar 

  16. A. J. Larkoski, I. Moult and B. Nachman, Jet Substructure at the Large Hadron Collider: A Review of Recent Advances in Theory and Machine Learning, Phys. Rept. 841 (2020) 1 [arXiv:1709.04464] [INSPIRE].

    Article  ADS  Google Scholar 

  17. R. Kogler et al., Jet Substructure at the Large Hadron Collider: Experimental Review, Rev. Mod. Phys. 91 (2019) 045003 [arXiv:1803.06991] [INSPIRE].

    Article  ADS  Google Scholar 

  18. S. Marzani, G. Soyez and M. Spannowsky, Looking inside jets: an introduction to jet substructure and boosted-object phenomenology, vol. 958, Springer, (2019).

  19. A. J. Larkoski, S. Marzani, G. Soyez and J. Thaler, Soft Drop, JHEP 05 (2014) 146 [arXiv:1402.2657] [INSPIRE].

    Article  ADS  Google Scholar 

  20. J. M. Butterworth, A. R. Davison, M. Rubin and G. P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [arXiv:0802.2470] [INSPIRE].

    Article  ADS  Google Scholar 

  21. M. Dasgupta, A. Fregoso, S. Marzani and G. P. Salam, Towards an understanding of jet substructure, JHEP 09 (2013) 029 [arXiv:1307.0007] [INSPIRE].

    Article  ADS  Google Scholar 

  22. S. Marzani, L. Schunk and G. Soyez, A study of jet mass distributions with grooming, JHEP 07 (2017) 132 [arXiv:1704.02210] [INSPIRE].

    Article  ADS  Google Scholar 

  23. S. Marzani, L. Schunk and G. Soyez, The jet mass distribution after Soft Drop, Eur. Phys. J. C 78 (2018) 96 [arXiv:1712.05105] [INSPIRE].

    Article  ADS  Google Scholar 

  24. C. Frye, A. J. Larkoski, M. D. Schwartz and K. Yan, Factorization for groomed jet substructure beyond the next-to-leading logarithm, JHEP 07 (2016) 064 [arXiv:1603.09338] [INSPIRE].

    Article  ADS  Google Scholar 

  25. A. Kardos, A. J. Larkoski and Z. Trócsányi, Groomed jet mass at high precision, Phys. Lett. B 809 (2020) 135704 [arXiv:2002.00942] [INSPIRE].

    Article  Google Scholar 

  26. A. Kardos, A. J. Larkoski and Z. Trócsányi, Two- and three-loop data for the groomed jet mass, Phys. Rev. D 101 (2020) 114034 [arXiv:2002.05730] [INSPIRE].

    Article  ADS  Google Scholar 

  27. A. J. Larkoski, Improving the understanding of jet grooming in perturbation theory, JHEP 09 (2020) 072 [arXiv:2006.14680] [INSPIRE].

    Article  ADS  Google Scholar 

  28. ATLAS collaboration, Measurement of the Soft-Drop Jet Mass in pp Collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS Detector, Phys. Rev. Lett. 121 (2018) 092001 [arXiv:1711.08341] [INSPIRE].

  29. CMS collaboration, Measurements of the differential jet cross section as a function of the jet mass in dijet events from proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP 11 (2018) 113 [arXiv:1807.05974] [INSPIRE].

  30. CMS collaboration, Study of quark and gluon jet substructure in Z+jet and dijet events from pp collisions, JHEP 01 (2022) 188 [arXiv:2109.03340] [INSPIRE].

  31. A. J. Larkoski, J. Thaler and W. J. Waalewijn, Gaining (Mutual) Information about Quark/Gluon Discrimination, JHEP 11 (2014) 129 [arXiv:1408.3122] [INSPIRE].

    Article  ADS  Google Scholar 

  32. J. R. Andersen et al., Les Houches 2015: Physics at TeV Colliders Standard Model Working Group Report, in 9th Les Houches Workshop on Physics at TeV Colliders, Les Houches, France, 1–19 Jun 2015.

  33. P. Gras et al., Systematics of quark/gluon tagging, JHEP 07 (2017) 091 [arXiv:1704.03878] [INSPIRE].

    Article  ADS  Google Scholar 

  34. J. Mo, F. J. Tackmann and W. J. Waalewijn, A case study of quark-gluon discrimination at NNLL’ in comparison to parton showers, Eur. Phys. J. C 77 (2017) 770 [arXiv:1708.00867] [INSPIRE].

    Article  ADS  Google Scholar 

  35. D. Reichelt, P. Richardson and A. Siódmok, Improving the Simulation of Quark and Gluon Jets with HERWIG 7, Eur. Phys. J. C 77 (2017) 876 [arXiv:1708.01491] [INSPIRE].

    Article  ADS  Google Scholar 

  36. D. Reichelt, P. Richardson and A. Siódmok, Colour Reconnections in Quark and Gluon Jets in HERWIG 7, Acta Phys. Polon. B 48 (2017) 1167 [INSPIRE].

    Article  ADS  Google Scholar 

  37. A. J. Larkoski and E. M. Metodiev, A Theory of Quark vs. Gluon Discrimination, JHEP 10 (2019) 014 [arXiv:1906.01639] [INSPIRE].

  38. S. Amoroso et al., Les Houches 2019: Physics at TeV Colliders: Standard Model Working Group Report, in 11th Les Houches Workshop on Physics at TeV Colliders: PhysTeV Les Houches, Les Houches, France, 10–28 June 2019.

  39. S. Caletti, O. Fedkevych, S. Marzani and D. Reichelt, Tagging the initial-state gluon, Eur. Phys. J. C 81 (2021) 844 [arXiv:2108.10024] [INSPIRE].

    Article  ADS  Google Scholar 

  40. C. F. Berger, T. Kucs and G. F. Sterman, Event shape/energy flow correlations, Phys. Rev. D 68 (2003) 014012 [hep-ph/0303051] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  41. L. G. Almeida, S. J. Lee, G. Perez, G. F. Sterman, I. Sung and J. Virzi, Substructure of high-pT Jets at the LHC, Phys. Rev. D 79 (2009) 074017 [arXiv:0807.0234] [INSPIRE].

    Article  ADS  Google Scholar 

  42. C. F. Berger, T. Kucs and G. F. Sterman, Interjet energy flow/event shape correlations, Int. J. Mod. Phys. A 18 (2003) 4159 [hep-ph/0212343] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  43. A. Banfi, G. P. Salam and G. Zanderighi, Principles of general final-state resummation and automated implementation, JHEP 03 (2005) 073 [hep-ph/0407286] [INSPIRE].

    Article  ADS  Google Scholar 

  44. S. D. Ellis, C. K. Vermilion, J. R. Walsh, A. Hornig and C. Lee, Jet Shapes and Jet Algorithms in SCET, JHEP 11 (2010) 101 [arXiv:1001.0014] [INSPIRE].

    Article  ADS  Google Scholar 

  45. A. J. Larkoski, G. P. Salam and J. Thaler, Energy Correlation Functions for Jet Substructure, JHEP 06 (2013) 108 [arXiv:1305.0007] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. A. J. Larkoski, D. Neill and J. Thaler, Jet Shapes with the Broadening Axis, JHEP 04 (2014) 017 [arXiv:1401.2158] [INSPIRE].

    Article  ADS  Google Scholar 

  47. A. Hornig, Y. Makris and T. Mehen, Jet Shapes in Dijet Events at the LHC in SCET, JHEP 04 (2016) 097 [arXiv:1601.01319] [INSPIRE].

    ADS  Google Scholar 

  48. Z.-B. Kang, K. Lee and F. Ringer, Jet angularity measurements for single inclusive jet production, JHEP 04 (2018) 110 [arXiv:1801.00790] [INSPIRE].

    Article  ADS  Google Scholar 

  49. Z.-B. Kang, K. Lee, X. Liu and F. Ringer, Soft drop groomed jet angularities at the LHC, Phys. Lett. B 793 (2019) 41 [arXiv:1811.06983] [INSPIRE].

    Article  ADS  Google Scholar 

  50. E.-C. Aschenauer, K. Lee, B. S. Page and F. Ringer, Jet angularities in photoproduction at the Electron-Ion Collider, Phys. Rev. D 101 (2020) 054028 [arXiv:1910.11460] [INSPIRE].

    Article  ADS  Google Scholar 

  51. S. Caletti et al., Jet angularities in Z+jet production at the LHC, JHEP 07 (2021) 076 [arXiv:2104.06920] [INSPIRE].

    Article  ADS  Google Scholar 

  52. J. Zhu, D. Kang and T. Maji, Angularity in DIS at next-to-next-to-leading log accuracy, JHEP 11 (2021) 026 [arXiv:2106.14429] [INSPIRE].

    Article  ADS  Google Scholar 

  53. ATLAS collaboration, Measurement of jet-substructure observables in top quark, W boson and light jet production in proton-proton collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, JHEP 08 (2019) 033 [arXiv:1903.02942] [INSPIRE].

  54. ALICE collaboration, Measurements of the groomed and ungroomed jet angularities in pp collisions at \( \sqrt{s} \) = 5.02 TeV, arXiv:2107.11303 [INSPIRE].

  55. CMS collaboration, Measurement of jet substructure observables in \( t\overline{t} \) events from proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Rev. D 98 (2018) 092014 [arXiv:1808.07340] [INSPIRE].

  56. E. Gerwick, S. Hoeche, S. Marzani and S. Schumann, Soft evolution of multi-jet final states, JHEP 02 (2015) 106 [arXiv:1411.7325] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Sherpa collaboration, Event Generation with Sherpa 2.2, SciPost Phys. 7 (2019) 034 [arXiv:1905.09127] [INSPIRE].

  58. M. Cacciari, G. P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  59. J. R. Andersen et al., Les Houches 2015: Physics at TeV Colliders Standard Model Working Group Report, in 9th Les Houches Workshop on Physics at TeV Colliders (PhysTeV 2015), Les Houches, France, June 1–19, 2015.

  60. M. Cacciari, G. P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  61. J. Alwall et al., Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions, Eur. Phys. J. C 53 (2008) 473 [arXiv:0706.2569] [INSPIRE].

    Article  ADS  Google Scholar 

  62. S. Hoeche, F. Krauss, S. Schumann and F. Siegert, QCD matrix elements and truncated showers, JHEP 05 (2009) 053 [arXiv:0903.1219] [INSPIRE].

    Article  ADS  Google Scholar 

  63. J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

    Article  ADS  Google Scholar 

  64. T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  65. T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [INSPIRE].

  66. J. Bellm et al., HERWIG 7.0/HERWIG++ 3.0 release note, Eur. Phys. J. C 76 (2016) 196 [arXiv:1512.01178] [INSPIRE].

  67. J. Bellm et al., HERWIG 7.2 release note, Eur. Phys. J. C 80 (2020) 452 [arXiv:1912.06509] [INSPIRE].

  68. NNPDF collaboration, Parton distributions for the LHC Run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE].

  69. S. Hoeche, F. Krauss, M. Schönherr and F. Siegert, QCD matrix elements + parton showers: The NLO case, JHEP 04 (2013) 027 [arXiv:1207.5030] [INSPIRE].

    Article  ADS  Google Scholar 

  70. S. Schumann and F. Krauss, A Parton shower algorithm based on Catani-Seymour dipole factorisation, JHEP 03 (2008) 038 [arXiv:0709.1027] [INSPIRE].

    Article  ADS  Google Scholar 

  71. F. Buccioni et al., OpenLoops 2, Eur. Phys. J. C 79 (2019) 866 [arXiv:1907.13071] [INSPIRE].

    Article  ADS  Google Scholar 

  72. A. Denner, S. Dittmaier and L. Hofer, Collier: a fortran-based Complex One-Loop LIbrary in Extended Regularizations, Comput. Phys. Commun. 212 (2017) 220 [arXiv:1604.06792] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  73. E. Bothmann, M. Schönherr and S. Schumann, Reweighting QCD matrix-element and parton-shower calculations, Eur. Phys. J. C 76 (2016) 590 [arXiv:1606.08753] [INSPIRE].

    Article  ADS  Google Scholar 

  74. M. Cacciari, S. Frixione, M. L. Mangano, P. Nason and G. Ridolfi, The \( t\overline{t} \) cross-section at 1.8 TeV and 1.96 TeV: A study of the systematics due to parton densities and scale dependence, JHEP 04 (2004) 068 [hep-ph/0303085] [INSPIRE].

    Article  ADS  Google Scholar 

  75. T. Sjöstrand and M. van Zijl, A Multiple Interaction Model for the Event Structure in Hadron Collisions, Phys. Rev. D 36 (1987) 2019 [INSPIRE].

    Article  ADS  Google Scholar 

  76. J.-C. Winter, F. Krauss and G. Soff, A modified cluster hadronization model, Eur. Phys. J. C 36 (2004) 381 [hep-ph/0311085] [INSPIRE].

    Article  ADS  Google Scholar 

  77. T. Sjöstrand, S. Mrenna and P. Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

  78. B. Andersson, G. Gustafson, G. Ingelman and T. Sjöstrand, Parton Fragmentation and String Dynamics, Phys. Rept. 97 (1983) 31 [INSPIRE].

    Article  ADS  Google Scholar 

  79. T. Sjöstrand, Jet Fragmentation of Nearby Partons, Nucl. Phys. B 248 (1984) 469 [INSPIRE].

    Article  ADS  Google Scholar 

  80. N. Baberuxki, C. T. Preuss, D. Reichelt and S. Schumann, Resummed predictions for jet-resolution scales in multijet production in e+ e− annihilation, JHEP 04 (2020) 112 [arXiv:1912.09396] [INSPIRE].

    Article  ADS  Google Scholar 

  81. J. Baron, D. Reichelt, S. Schumann, N. Schwanemann and V. Theeuwes, Soft-drop grooming for hadronic event shapes, JHEP 07 (2021) 142 [arXiv:2012.09574] [INSPIRE].

    Article  ADS  Google Scholar 

  82. T. Gleisberg and S. Hoeche, Comix, a new matrix element generator, JHEP 12 (2008) 039 [arXiv:0808.3674] [INSPIRE].

    Article  ADS  Google Scholar 

  83. A. Banfi, G. P. Salam and G. Zanderighi, Infrared safe definition of jet flavor, Eur. Phys. J. C 47 (2006) 113 [hep-ph/0601139] [INSPIRE].

    Article  ADS  Google Scholar 

  84. M. Dasgupta and G. P. Salam, Resummation of nonglobal QCD observables, Phys. Lett. B 512 (2001) 323 [hep-ph/0104277] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  85. M. Dasgupta and G. P. Salam, Accounting for coherence in interjet Et flow: A case study, JHEP 03 (2002) 017 [hep-ph/0203009] [INSPIRE].

    Article  ADS  Google Scholar 

  86. M. Dasgupta, K. Khelifa-Kerfa, S. Marzani and M. Spannowsky, On jet mass distributions in Z+jet and dijet processes at the LHC, JHEP 10 (2012) 126 [arXiv:1207.1640] [INSPIRE].

    Article  ADS  Google Scholar 

  87. S. Actis, A. Denner, L. Hofer, J.-N. Lang, A. Scharf and S. Uccirati, RECOLA: REcursive Computation of One-Loop Amplitudes, Comput. Phys. Commun. 214 (2017) 140 [arXiv:1605.01090] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  88. B. Biedermann, S. Bräuer, A. Denner, M. Pellen, S. Schumann and J. M. Thompson, Automation of NLO QCD and EW corrections with Sherpa and Recola, Eur. Phys. J. C 77 (2017) 492 [arXiv:1704.05783] [INSPIRE].

    Article  ADS  Google Scholar 

  89. S. Catani and M. H. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. 510 (1998) 503] [hep-ph/9605323] [INSPIRE].

  90. T. Gleisberg and F. Krauss, Automating dipole subtraction for QCD NLO calculations, Eur. Phys. J. C 53 (2008) 501 [arXiv:0709.2881] [INSPIRE].

    Article  ADS  Google Scholar 

  91. S. Marzani, D. Reichelt, S. Schumann, G. Soyez and V. Theeuwes, Fitting the Strong Coupling Constant with Soft-Drop Thrust, JHEP 11 (2019) 179 [arXiv:1906.10504] [INSPIRE].

    Article  ADS  Google Scholar 

  92. A. H. Hoang, S. Mantry, A. Pathak and I. W. Stewart, Nonperturbative Corrections to Soft Drop Jet Mass, JHEP 12 (2019) 002 [arXiv:1906.11843] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  93. A. Pathak, I. W. Stewart, V. Vaidya and L. Zoppi, EFT for Soft Drop Double Differential Cross Section, JHEP 04 (2021) 032 [arXiv:2012.15568] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  94. A. Buckley et al., General-purpose event generators for LHC physics, Phys. Rept. 504 (2011) 145 [arXiv:1101.2599] [INSPIRE].

    Article  ADS  Google Scholar 

  95. T. Sjöstrand and P. Z. Skands, Transverse-momentum-ordered showers and interleaved multiple interactions, Eur. Phys. J. C 39 (2005) 129 [hep-ph/0408302] [INSPIRE].

    Article  ADS  Google Scholar 

  96. R. Corke and T. Sjöstrand, Interleaved Parton Showers and Tuning Prospects, JHEP 03 (2011) 032 [arXiv:1011.1759] [INSPIRE].

    Article  ADS  Google Scholar 

  97. M. Arratia et al., Publishing unbinned differential cross section results, 2022 JINST 17 P01024 [arXiv:2109.13243] [INSPIRE].

  98. J. N. Howard, S. Mandt, D. Whiteson and Y. Yang, Foundations of a Fast, Data-Driven, Machine-Learned Simulator, arXiv:2101.08944 [INSPIRE].

  99. M. Bellagente et al., Invertible Networks or Partons to Detector and Back Again, SciPost Phys. 9 (2020) 074 [arXiv:2006.06685] [INSPIRE].

    Article  ADS  Google Scholar 

  100. A. Andreassen, P. T. Komiske, E. M. Metodiev, B. Nachman and J. Thaler, OmniFold: A Method to Simultaneously Unfold All Observables, Phys. Rev. Lett. 124 (2020) 182001 [arXiv:1911.09107] [INSPIRE].

    Article  ADS  Google Scholar 

  101. M. Bellagente, A. Butter, G. Kasieczka, T. Plehn and R. Winterhalder, How to GAN away Detector Effects, SciPost Phys. 8 (2020) 070 [arXiv:1912.00477] [INSPIRE].

    Article  ADS  Google Scholar 

  102. A. Buckley et al., Rivet user manual, Comput. Phys. Commun. 184 (2013) 2803 [arXiv:1003.0694] [INSPIRE].

    Article  ADS  Google Scholar 

  103. C. Bierlich et al., Robust Independent Validation of Experiment and Theory: Rivet version 3, SciPost Phys. 8 (2020) 026 [arXiv:1912.05451] [INSPIRE].

    Article  ADS  Google Scholar 

  104. M. Dobbs and J. B. Hansen, The HepMC C++ Monte Carlo event record for High Energy Physics, Comput. Phys. Commun. 134 (2001) 41 [INSPIRE].

    Article  ADS  Google Scholar 

  105. A. Buckley et al., The HepMC3 event record library for Monte Carlo event generators, Comput. Phys. Commun. 260 (2021) 107310 [arXiv:1912.08005] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  106. L. Lönnblad, C. Peterson and T. Rognvaldsson, Finding Gluon Jets With a Neural Trigger, Phys. Rev. Lett. 65 (1990) 1321 [INSPIRE].

    Article  ADS  Google Scholar 

  107. ATLAS collaboration, Quark versus Gluon Jet Tagging Using Jet Images with the ATLAS Detector, Tech. Rep. ATL-PHYS-PUB-2017-017, CERN, Geneva (2017).

  108. P. T. Komiske, E. M. Metodiev and M. D. Schwartz, Deep learning in color: towards automated quark/gluon jet discrimination, JHEP 01 (2017) 110 [arXiv:1612.01551] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  109. A. Romero, D. Whiteson, M. Fenton, J. Collado and P. Baldi, Safety of Quark/Gluon Jet Classification, arXiv:2103.09103 [INSPIRE].

  110. T. Cheng, Recursive Neural Networks in Quark/Gluon Tagging, Comput. Softw. Big Sci. 2 (2018) 3 [arXiv:1711.02633] [INSPIRE].

    Article  Google Scholar 

  111. G. Kasieczka, N. Kiefer, T. Plehn and J. M. Thompson, Quark-Gluon Tagging: Machine Learning vs Detector, SciPost Phys. 6 (2019) 069 [arXiv:1812.09223] [INSPIRE].

    Article  ADS  Google Scholar 

  112. J. S.H. Lee, S. M. Lee, Y. Lee, I. Park, I. J. Watson and S. Yang, Quark Gluon Jet Discrimination with Weakly Supervised Learning, J. Korean Phys. Soc. 75 (2019) 652 [arXiv:2012.02540] [INSPIRE].

    Article  ADS  Google Scholar 

  113. M. Rubin, G. P. Salam and S. Sapeta, Giant QCD K-factors beyond NLO, JHEP 09 (2010) 084 [arXiv:1006.2144] [INSPIRE].

    Article  ADS  Google Scholar 

  114. https://www.theorie.physik.uni-goettingen.de/~sschuma/JetAngularities/.

  115. K. Benkendorfer and A. J. Larkoski, Grooming at the cusp: all-orders predictions for the transition region of jet groomers, JHEP 11 (2021) 188 [arXiv:2108.02779] [INSPIRE].

    Article  ADS  Google Scholar 

  116. S. Höche and S. Prestel, The midpoint between dipole and parton showers, Eur. Phys. J. C 75 (2015) 461 [arXiv:1506.05057] [INSPIRE].

    Article  ADS  Google Scholar 

  117. G. Bell, R. Rahn and J. Talbert, Generic dijet soft functions at two-loop order: uncorrelated emissions, JHEP 09 (2020) 015 [arXiv:2004.08396] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  118. G. Bell, R. Rahn and J. Talbert, Generic dijet soft functions at two-loop order: correlated emissions, JHEP 07 (2019) 101 [arXiv:1812.08690] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  119. G. Bell, K. Brune, G. Das and M. Wald, Automation of Beam and Jet functions at NNLO, arXiv:2110.04804 [INSPIRE].

  120. A. Banfi, H. McAslan, P. F. Monni and G. Zanderighi, A general method for the resummation of event-shape distributions in e+ e− annihilation, JHEP 05 (2015) 102 [arXiv:1412.2126] [INSPIRE].

    Article  ADS  Google Scholar 

  121. A. Banfi, F. A. Dreyer and P. F. Monni, Next-to-leading non-global logarithms in QCD, JHEP 10 (2021) 006 [arXiv:2104.06416] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  122. A. Banfi, F. A. Dreyer and P. F. Monni, Higher-order non-global logarithms from jet calculus, arXiv:2111.02413 [INSPIRE].

  123. M. Czakon, A. Mitov and R. Poncelet, Next-to-Next-to-Leading Order Study of Three-Jet Production at the LHC, Phys. Rev. Lett. 127 (2021) 152001 [arXiv:2106.05331] [INSPIRE].

    Article  ADS  Google Scholar 

  124. J. Currie, E. W. N. Glover and J. Pires, Next-to-Next-to Leading Order QCD Predictions for Single Jet Inclusive Production at the LHC, Phys. Rev. Lett. 118 (2017) 072002 [arXiv:1611.01460] [INSPIRE].

    Article  ADS  Google Scholar 

  125. A. Gehrmann-De Ridder, T. Gehrmann, E. W. N. Glover, A. Huss and T. A. Morgan, Precise QCD predictions for the production of a Z boson in association with a hadronic jet, Phys. Rev. Lett. 117 (2016) 022001 [arXiv:1507.02850] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Institute for Particle Physics Phenomenology, Department of Physics, Durham University, South Road, Durham, DH1 3LE, United Kingdom

    Daniel Reichelt

  2. Institut für Theoretische Physik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany

    Daniel Reichelt & Steffen Schumann

  3. Dipartimento di Fisica, Università di Genova and INFN, Sezione di Genova, Via Dodecaneso 33, 16146, Genoa, Italy

    Simone Caletti, Oleh Fedkevych & Simone Marzani

  4. Institut de Physique Théorique, Paris Saclay University, CNRS, CEA, Orme des Merisiers, Bât 774, F-91191, Gif-sur-Yvette, France

    Gregory Soyez

Authors
  1. Daniel Reichelt
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Simone Caletti
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Oleh Fedkevych
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Simone Marzani
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Steffen Schumann
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. Gregory Soyez
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Daniel Reichelt.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2112.09545

Supplementary Information

ESM 1

(TGZ 6910 kb)

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Reichelt, D., Caletti, S., Fedkevych, O. et al. Phenomenology of jet angularities at the LHC. J. High Energ. Phys. 2022, 131 (2022). https://doi.org/10.1007/JHEP03(2022)131

Download citation

  • Received: 07 January 2022

  • Accepted: 01 March 2022

  • Published: 21 March 2022

  • DOI: https://doi.org/10.1007/JHEP03(2022)131

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Jets and Jet Substructure
  • Resummation
  • Parton Shower
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.