Skip to main content

Electric dipole moments, new forces and dark matter

A preprint version of the article is available at arXiv.

Abstract

New sources of CP violation beyond the Standard Model are crucial to explain the baryon asymmetry in the Universe. We discuss the impact of new CP violating interactions in theories where a dark matter candidate is predicted by the cancellation of gauge anomalies. In these theories, the constraint on the dark matter relic density implies an upper bound on the new symmetry breaking scale from which all new states acquire their masses. We investigate in detail the predictions for electric dipole moments and show that if the relevant CP-violating phase is large, experiments such as the ACME collaboration will be able to fully probe the theory.

References

  1. ACME collaboration, Improved limit on the electric dipole moment of the electron, Nature 562 (2018) 355 [INSPIRE].

  2. W. Bernreuther and M. Suzuki, The electric dipole moment of the electron, Rev. Mod. Phys. 63 (1991) 313 [Erratum ibid. 64 (1992) 633] [INSPIRE].

  3. M. Pospelov and A. Ritz, Electric dipole moments as probes of new physics, Annals Phys. 318 (2005) 119 [hep-ph/0504231] [INSPIRE].

    ADS  Article  Google Scholar 

  4. T. Fukuyama, Searching for new physics beyond the standard model in electric dipole moment, Int. J. Mod. Phys. A 27 (2012) 1230015 [arXiv:1201.4252] [INSPIRE].

    ADS  Article  Google Scholar 

  5. T. Chupp, P. Fierlinger, M. Ramsey-Musolf and J. Singh, Electric dipole moments of atoms, molecules, nuclei, and particles, Rev. Mod. Phys. 91 (2019) 015001 [arXiv:1710.02504] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  6. T. Ibrahim and P. Nath, The neutron and the lepton EDMs in MSSM, large CP-violating phases, and the cancellation mechanism, Phys. Rev. D 58 (1998) 111301 [Erratum ibid. 60 (1999) 099902] [hep-ph/9807501] [INSPIRE].

  7. S. Abel, S. Khalil and O. Lebedev, EDM constraints in supersymmetric theories, Nucl. Phys. B 606 (2001) 151 [hep-ph/0103320] [INSPIRE].

    ADS  Article  Google Scholar 

  8. O. Lebedev and M. Pospelov, Electric dipole moments in the limit of heavy superpartners, Phys. Rev. Lett. 89 (2002) 101801 [hep-ph/0204359] [INSPIRE].

    ADS  Article  Google Scholar 

  9. D. Chang, W.-F. Chang and W.-Y. Keung, New constraint from electric dipole moments on chargino baryogenesis in MSSM, Phys. Rev. D 66 (2002) 116008 [hep-ph/0205084] [INSPIRE].

    ADS  Article  Google Scholar 

  10. A. Pilaftsis, Higgs mediated electric dipole moments in the MSSM: An application to baryogenesis and Higgs searches, Nucl. Phys. B 644 (2002) 263 [hep-ph/0207277] [INSPIRE].

    ADS  Article  Google Scholar 

  11. D. A. Demir, O. Lebedev, K. A. Olive, M. Pospelov and A. Ritz, Electric dipole moments in the MSSM at large tan β, Nucl. Phys. B 680 (2004) 339 [hep-ph/0311314] [INSPIRE].

    ADS  Article  Google Scholar 

  12. M. Carena, A. Megevand, M. Quirós and C. E. M. Wagner, Electroweak baryogenesis and new TeV fermions, Nucl. Phys. B 716 (2005) 319 [hep-ph/0410352] [INSPIRE].

    ADS  Article  Google Scholar 

  13. Y. Li, S. Profumo and M. Ramsey-Musolf, Higgs-Higgsino-Gaugino induced two loop electric dipole moments, Phys. Rev. D 78 (2008) 075009 [arXiv:0806.2693] [INSPIRE].

    ADS  Article  Google Scholar 

  14. J. R. Ellis, J. S. Lee and A. Pilaftsis, Electric dipole moments in the MSSM reloaded, JHEP 10 (2008) 049 [arXiv:0808.1819] [INSPIRE].

    ADS  Article  Google Scholar 

  15. N. Yamanaka, Two-loop level rainbowlike supersymmetric contribution to the fermion electric dipole moment, Phys. Rev. D 87 (2013) 011701 [arXiv:1211.1808] [INSPIRE].

    ADS  Article  Google Scholar 

  16. D. McKeen, M. Pospelov and A. Ritz, Electric dipole moment signatures of PeV-scale superpartners, Phys. Rev. D 87 (2013) 113002 [arXiv:1303.1172] [INSPIRE].

    ADS  Article  Google Scholar 

  17. Y. Nakai and M. Reece, Electric dipole moments in natural supersymmetry, JHEP 08 (2017) 031 [arXiv:1612.08090] [INSPIRE].

    ADS  Article  Google Scholar 

  18. C. Cesarotti, Q. Lu, Y. Nakai, A. Parikh and M. Reece, Interpreting the electron EDM constraint, JHEP 05 (2019) 059 [arXiv:1810.07736] [INSPIRE].

    ADS  Article  Google Scholar 

  19. N. Arkani-Hamed, S. Dimopoulos, G. F. Giudice and A. Romanino, Aspects of split supersymmetry, Nucl. Phys. B 709 (2005) 3 [hep-ph/0409232] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  20. D. Chang, W.-F. Chang and W.-Y. Keung, Electric dipole moment in the split supersymmetry models, Phys. Rev. D 71 (2005) 076006 [hep-ph/0503055] [INSPIRE].

    ADS  Article  Google Scholar 

  21. G. F. Giudice and A. Romanino, Electric dipole moments in split supersymmetry, Phys. Lett. B 634 (2006) 307 [hep-ph/0510197] [INSPIRE].

    ADS  Article  Google Scholar 

  22. K. Fuyuto, X.-G. He, G. Li and M. Ramsey-Musolf, CP-violating dark photon interaction, Phys. Rev. D 101 (2020) 075016 [arXiv:1902.10340] [INSPIRE].

    ADS  Article  Google Scholar 

  23. S. Okawa, M. Pospelov and A. Ritz, Electric dipole moments from dark sectors, Phys. Rev. D 100 (2019) 075017 [arXiv:1905.05219] [INSPIRE].

    ADS  Article  Google Scholar 

  24. J. Fan and M. Reece, Probing charged matter through Higgs diphoton decay, gamma ray lines, and EDMs, JHEP 06 (2013) 004 [arXiv:1301.2597] [INSPIRE].

    ADS  Article  Google Scholar 

  25. V. Cirigliano, W. Dekens, J. de Vries and E. Mereghetti, Constraining the top-Higgs sector of the Standard Model Effective Field Theory, Phys. Rev. D 94 (2016) 034031 [arXiv:1605.04311] [INSPIRE].

    ADS  Article  Google Scholar 

  26. T. Abe, Effect of CP-violation in the singlet-doublet dark matter model, Phys. Lett. B 771 (2017) 125 [arXiv:1702.07236] [INSPIRE].

    ADS  Article  Google Scholar 

  27. S. Alioli, V. Cirigliano, W. Dekens, J. de Vries and E. Mereghetti, Right-handed charged currents in the era of the Large Hadron Collider, JHEP 05 (2017) 086 [arXiv:1703.04751] [INSPIRE].

    ADS  Article  Google Scholar 

  28. M. Frigerio, M. Nardecchia, J. Serra and L. Vecchi, The bearable compositeness of leptons, JHEP 10 (2018) 017 [arXiv:1807.04279] [INSPIRE].

    ADS  Article  Google Scholar 

  29. G. Panico, A. Pomarol and M. Riembau, EFT approach to the electron electric dipole moment at the two-loop level, JHEP 04 (2019) 090 [arXiv:1810.09413] [INSPIRE].

    ADS  Article  Google Scholar 

  30. M. Duerr, P. Fileviez Perez and M. B. Wise, Gauge theory for baryon and lepton numbers with leptoquarks, Phys. Rev. Lett. 110 (2013) 231801 [arXiv:1304.0576] [INSPIRE].

    ADS  Article  Google Scholar 

  31. P. Fileviez Perez, S. Ohmer and H. H. Patel, Minimal theory for lepto-baryons, Phys. Lett. B 735 (2014) 283 [arXiv:1403.8029] [INSPIRE].

    ADS  Article  Google Scholar 

  32. S. M. Barr and A. Zee, Electric dipole moment of the electron and of the neutron, Phys. Rev. Lett. 65 (1990) 21 [Erratum ibid. 65 (1990) 2920] [INSPIRE].

  33. Planck collaboration, Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641 (2020) A6 [arXiv:1807.06209] [INSPIRE].

  34. P. Fileviez Pérez, E. Golias, R.-H. Li, C. Murgui and A. D. Plascencia, Anomaly-free dark matter models, Phys. Rev. D 100 (2019) 015017 [arXiv:1904.01017] [INSPIRE].

    ADS  Article  Google Scholar 

  35. P. Fileviez Pérez, C. Murgui and A. D. Plascencia, Neutrino-dark matter connections in gauge theories, Phys. Rev. D 100 (2019) 035041 [arXiv:1905.06344] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  36. J. Doyle, Search for the electric dipole moment of the electron with thorium monoxide — The ACME experiment, talk given at the KITP Conference: Symmetry Tests in Nuclei and Atoms, September 19–23, Santa Barbara, U.S.A. (2016).

  37. I. Kozyryev and N. R. Hutzler, Precision measurement of time-reversal symmetry violation with laser-cooled polyatomic molecules, Phys. Rev. Lett. 119 (2017) 133002 [arXiv:1705.11020] [INSPIRE].

    ADS  Article  Google Scholar 

  38. nEDM collaboration, Measurement of the permanent electric dipole moment of the neutron, Phys. Rev. Lett. 124 (2020) 081803 [arXiv:2001.11966] [INSPIRE].

  39. S. Alioli, M. Farina, D. Pappadopulo and J. T. Ruderman, Catching a new force by the tail, Phys. Rev. Lett. 120 (2018) 101801 [arXiv:1712.02347] [INSPIRE].

    ADS  Article  Google Scholar 

  40. ATLAS collaboration, Search for new high-mass phenomena in the dilepton final state using 36 fb1 of proton-proton collision data at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, JHEP 10 (2017) 182 [arXiv:1707.02424] [INSPIRE].

  41. P. F. Pérez, E. Golias, C. Murgui and A. D. Plascencia, The Higgs and leptophobic force at the LHC, JHEP 07 (2020) 087 [arXiv:2003.09426] [INSPIRE].

    ADS  Article  Google Scholar 

  42. M. Carena, M. Quirós and Y. Zhang, Electroweak baryogenesis from dark-sector CP-violation, Phys. Rev. Lett. 122 (2019) 201802 [arXiv:1811.09719] [INSPIRE].

    ADS  Article  Google Scholar 

  43. M. Carena, M. Quirós and Y. Zhang, Dark CP-violation and gauged lepton or baryon number for electroweak baryogenesis, Phys. Rev. D 101 (2020) 055014 [arXiv:1908.04818] [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexis D. Plascencia.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2008.09116

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pérez, P.F., Plascencia, A.D. Electric dipole moments, new forces and dark matter. J. High Energ. Phys. 2021, 185 (2021). https://doi.org/10.1007/JHEP03(2021)185

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2021)185

Keywords

  • Beyond Standard Model
  • CP violation