Dark matter blind spots at one-loop

  • Tao Han
  • Hongkai Liu
  • Satyanarayan Mukhopadhyay
  • Xing WangEmail author
Open Access
Regular Article - Theoretical Physics


We evaluate the impact of one-loop electroweak corrections to the spin-independent dark matter (DM) scattering cross-section with nucleons (σSI), in models with a so-called blind spot for direct detection, where the leading-order prediction for the relevant DM coupling to the Higgs boson, and therefore σSI, are vanishingly small. Adopting a simple illustrative scenario in which the DM state results from the mixing of electroweak singlet and doublet fermions, we compute the relevant higher order corrections to the scalar effective operator contributions to σSI, stemming from both triangle and box diagrams involving the SM and dark sector fields. It is observed that in a significant region of the singlet-doublet model-space, the one-loop corrections “unblind” the tree-level blind spots and lead to detectable SI scattering rates at future multi-ton scale liquid Xenon experiments, with σSI reaching values up to a few times 10−47 cm2, for a weak scale DM with \( \mathcal{O}(1) \) Yukawa couplings. Furthermore, we find that there always exists a new SI blind spot at the next-to-leading order, which is perturbatively shifted from the leading order one in the singlet-doublet mass parameters. For comparison, we also present the tree-level spin-dependent scattering cross-sections near the SI blind-spot region, that could lead to a larger signal. Our results can be mapped to the blind-spot scenario for bino-Higgsino DM in the MSSM, with other sfermions, the heavier Higgs boson, and the wino decoupled.


Beyond Standard Model Supersymmetric Standard Model 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [INSPIRE].
  2. [2]
    G. Bertone, D. Hooper and J. Silk, Particle dark matter: Evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [INSPIRE].
  3. [3]
    XENON collaboration, Dark Matter Search Results from a One Ton-Year Exposure of XENON1T, Phys. Rev. Lett. 121 (2018) 111302 [arXiv:1805.12562] [INSPIRE].
  4. [4]
    LUX collaboration, Results from a search for dark matter in the complete LUX exposure, Phys. Rev. Lett. 118 (2017) 021303 [arXiv:1608.07648] [INSPIRE].
  5. [5]
    PandaX-II collaboration, Dark Matter Results From 54-Ton-Day Exposure of PandaX-II Experiment, Phys. Rev. Lett. 119 (2017) 181302 [arXiv:1708.06917] [INSPIRE].
  6. [6]
    M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nucl. Phys. B 753 (2006) 178 [hep-ph/0512090] [INSPIRE].
  7. [7]
    M. Cirelli, A. Strumia and M. Tamburini, Cosmology and Astrophysics of Minimal Dark Matter, Nucl. Phys. B 787 (2007) 152 [arXiv:0706.4071] [INSPIRE].
  8. [8]
    J. Hisano, S. Matsumoto, M.M. Nojiri and O. Saito, Direct detection of the Wino and Higgsino-like neutralino dark matters at one-loop level, Phys. Rev. D 71 (2005) 015007 [hep-ph/0407168] [INSPIRE].
  9. [9]
    J. Hisano, K. Ishiwata and N. Nagata, A complete calculation for direct detection of Wino dark matter, Phys. Lett. B 690 (2010) 311 [arXiv:1004.4090] [INSPIRE].
  10. [10]
    J. Hisano, K. Ishiwata, N. Nagata and T. Takesako, Direct Detection of Electroweak-Interacting Dark Matter, JHEP 07 (2011) 005 [arXiv:1104.0228] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  11. [11]
    R.J. Hill and M.P. Solon, WIMP-nucleon scattering with heavy WIMP effective theory, Phys. Rev. Lett. 112 (2014) 211602 [arXiv:1309.4092] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    J. Hisano, K. Ishiwata and N. Nagata, QCD Effects on Direct Detection of Wino Dark Matter, JHEP 06 (2015) 097 [arXiv:1504.00915] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    L.E. Strigari, Neutrino Coherent Scattering Rates at Direct Dark Matter Detectors, New J. Phys. 11 (2009) 105011 [arXiv:0903.3630] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    J. Billard, L. Strigari and E. Figueroa-Feliciano, Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments, Phys. Rev. D 89 (2014) 023524 [arXiv:1307.5458] [INSPIRE].
  15. [15]
    P. Grothaus, M. Fairbairn and J. Monroe, Directional Dark Matter Detection Beyond the Neutrino Bound, Phys. Rev. D 90 (2014) 055018 [arXiv:1406.5047] [INSPIRE].
  16. [16]
    C.A.J. O’Hare, A.M. Green, J. Billard, E. Figueroa-Feliciano and L.E. Strigari, Readout strategies for directional dark matter detection beyond the neutrino background, Phys. Rev. D 92 (2015) 063518 [arXiv:1505.08061] [INSPIRE].
  17. [17]
    C. Cheung, L.J. Hall, D. Pinner and J.T. Ruderman, Prospects and Blind Spots for Neutralino Dark Matter, JHEP 05 (2013) 100 [arXiv:1211.4873] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    C. Cheung and D. Sanford, Simplified Models of Mixed Dark Matter, JCAP 02 (2014) 011 [arXiv:1311.5896] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    J.L. Feng, J. Kumar and D. Sanford, Xenophobic Dark Matter, Phys. Rev. D 88 (2013) 015021 [arXiv:1306.2315] [INSPIRE].
  20. [20]
    A. Dedes and D. Karamitros, Doublet-Triplet Fermionic Dark Matter, Phys. Rev. D 89 (2014) 115002 [arXiv:1403.7744] [INSPIRE].
  21. [21]
    P. Huang and C.E.M. Wagner, Blind Spots for neutralino Dark Matter in the MSSM with an intermediate m A, Phys. Rev. D 90 (2014) 015018 [arXiv:1404.0392] [INSPIRE].
  22. [22]
    A. Crivellin, M. Hoferichter, M. Procura and L.C. Tunstall, Light stops, blind spots and isospin violation in the MSSM, JHEP 07 (2015) 129 [arXiv:1503.03478] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    A. Freitas, S. Westhoff and J. Zupan, Integrating in the Higgs Portal to Fermion Dark Matter, JHEP 09 (2015) 015 [arXiv:1506.04149] [INSPIRE].CrossRefGoogle Scholar
  24. [24]
    M. Badziak, M. Olechowski and P. Szczerbiak, Blind spots for neutralino dark matter in the NMSSM, JHEP 03 (2016) 179 [arXiv:1512.02472] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    S. Banerjee, S. Matsumoto, K. Mukaida and Y.-L.S. Tsai, WIMP Dark Matter in a Well-Tempered Regime: A case study on Singlet-Doublets Fermionic WIMP, JHEP 11 (2016) 070 [arXiv:1603.07387] [INSPIRE].
  26. [26]
    T. Han, F. Kling, S. Su and Y. Wu, Unblinding the dark matter blind spots, JHEP 02 (2017) 057 [arXiv:1612.02387] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    S. Baum, M. Carena, N.R. Shah and C.E.M. Wagner, Higgs portals for thermal Dark Matter. EFT perspectives and the NMSSM, JHEP 04 (2018) 069 [arXiv:1712.09873] [INSPIRE].
  28. [28]
    R. Mahbubani and L. Senatore, The Minimal model for dark matter and unification, Phys. Rev. D 73 (2006) 043510 [hep-ph/0510064] [INSPIRE].
  29. [29]
    F. D’Eramo, Dark matter and Higgs boson physics, Phys. Rev. D 76 (2007) 083522 [arXiv:0705.4493] [INSPIRE].
  30. [30]
    T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE].
  31. [31]
    V. Shtabovenko, R. Mertig and F. Orellana, New Developments in FeynCalc 9.0, Comput. Phys. Commun. 207 (2016) 432 [arXiv:1601.01167] [INSPIRE].
  32. [32]
    R. Mertig, M. Böhm and A. Denner, FEYN CALC: Computer algebraic calculation of Feynman amplitudes, Comput. Phys. Commun. 64 (1991) 345 [INSPIRE].
  33. [33]
    A. Denner, S. Dittmaier and L. Hofer, Collier: a fortran-based Complex One-Loop LIbrary in Extended Regularizations, Comput. Phys. Commun. 212 (2017) 220 [arXiv:1604.06792] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  34. [34]
    A. Denner and S. Dittmaier, Reduction of one loop tensor five point integrals, Nucl. Phys. B 658 (2003) 175 [hep-ph/0212259] [INSPIRE].
  35. [35]
    A. Denner and S. Dittmaier, Reduction schemes for one-loop tensor integrals, Nucl. Phys. B 734 (2006) 62 [hep-ph/0509141] [INSPIRE].
  36. [36]
    A. Denner and S. Dittmaier, Scalar one-loop 4-point integrals, Nucl. Phys. B 844 (2011) 199 [arXiv:1005.2076] [INSPIRE].
  37. [37]
    N. Anand, A.L. Fitzpatrick and W.C. Haxton, Weakly interacting massive particle-nucleus elastic scattering response, Phys. Rev. C 89 (2014) 065501 [arXiv:1308.6288] [INSPIRE].
  38. [38]
    LUX-ZEPLIN collaboration, Projected WIMP Sensitivity of the LUX-ZEPLIN (LZ) Dark Matter Experiment, arXiv:1802.06039 [INSPIRE].
  39. [39]
    DARWIN collaboration, DARWIN: towards the ultimate dark matter detector, JCAP 11 (2016) 017 [arXiv:1606.07001] [INSPIRE].
  40. [40]
    L. Calibbi, A. Mariotti and P. Tziveloglou, Singlet-Doublet Model: Dark matter searches and LHC constraints, JHEP 10 (2015) 116 [arXiv:1505.03867] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    PICO collaboration, Dark Matter Search Results from the PICO-2L C 3 F 8 Bubble Chamber, Phys. Rev. Lett. 114 (2015) 231302 [arXiv:1503.00008] [INSPIRE].
  42. [42]
    PICO collaboration, Dark matter search results from the PICO-60 CF 3 I bubble chamber, Phys. Rev. D 93 (2016) 052014 [arXiv:1510.07754] [INSPIRE].
  43. [43]
    PICO collaboration, Dark Matter Search Results from the PICO-60 C 3 F 8 Bubble Chamber, Phys. Rev. Lett. 118 (2017) 251301 [arXiv:1702.07666] [INSPIRE].
  44. [44]
    ATLAS collaboration, Search for electroweak production of supersymmetric particles in final states with two or three leptons at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Eur. Phys. J. C 78 (2018) 995 [arXiv:1803.02762] [INSPIRE].
  45. [45]
    CMS collaboration, Search for electroweak production of charginos and neutralinos in multilepton final states in proton-proton collisions at \( \sqrt{s}=13 \) TeV, JHEP 03 (2018) 166 [arXiv:1709.05406] [INSPIRE].
  46. [46]
    ATLAS collaboration, Search for Supersymmetry at the high luminosity LHC with the ATLAS experiment, ATL-PHYS-PUB-2014-010.
  47. [47]
    CMS collaboration, Supersymmetry discovery potential in future LHC and HL-LHC running with the CMS detector, CMS-PAS-SUS-14-012.
  48. [48]
    A. Aboubrahim and P. Nath, Supersymmetry at a 28 TeV hadron collider: HE-LHC, Phys. Rev. D 98 (2018) 015009 [arXiv:1804.08642] [INSPIRE].
  49. [49]
    T. Han, S. Mukhopadhyay and X. Wang, Electroweak Dark Matter at Future Hadron Colliders, Phys. Rev. D 98 (2018) 035026 [arXiv:1805.00015] [INSPIRE].
  50. [50]
    ATLAS collaboration, Search for squarks and gluinos in final states with jets and missing transverse momentum at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Eur. Phys. J. C 76 (2016) 392 [arXiv:1605.03814] [INSPIRE].
  51. [51]
    A. Denner, Techniques for calculation of electroweak radiative corrections at the one loop level and results for W physics at LEP-200, Fortsch. Phys. 41 (1993) 307 [arXiv:0709.1075] [INSPIRE].ADSGoogle Scholar
  52. [52]
    L. Álvarez-Ruso, T. Ledwig, J. Martin Camalich and M.J. Vicente-Vacas, Nucleon mass and pion-nucleon sigma term from a chiral analysis of lattice QCD data, Phys. Rev. D 88 (2013) 054507 [arXiv:1304.0483] [INSPIRE].
  53. [53]
    P. Junnarkar and A. Walker-Loud, Scalar strange content of the nucleon from lattice QCD, Phys. Rev. D 87 (2013) 114510 [arXiv:1301.1114] [INSPIRE].
  54. [54]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs 3: A program for calculating dark matter observables, Comput. Phys. Commun. 185 (2014) 960 [arXiv:1305.0237] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Tao Han
    • 1
    • 2
    • 3
  • Hongkai Liu
    • 1
  • Satyanarayan Mukhopadhyay
    • 4
  • Xing Wang
    • 1
    Email author
  1. 1.Department of Physics and AstronomyUniversity of PittsburghPittsburghU.S.A.
  2. 2.Department of PhysicsTsinghua UniversityBeijingChina
  3. 3.Collaborative Innovation Center of Quantum MatterBeijingChina
  4. 4.School of Physical Sciences, Indian Association for the Cultivation of ScienceKolkataIndia

Personalised recommendations