Advertisement

Type-II 2HDM under the precision measurements at the Z-pole and a Higgs factory

  • Ning Chen
  • Tao Han
  • Shufang Su
  • Wei SuEmail author
  • Yongcheng Wu
Open Access
Regular Article - Theoretical Physics

Abstract

Future precision measurements of the Standard Model (SM) parameters at the proposed Z-factories and Higgs factories may have significant impacts on new physics beyond the Standard Model in the electroweak sector. We illustrate this by focusing on the Type-II two Higgs doublet model (Type-II 2HDM). The contributions from the heavy Higgs bosons at the tree-level and at the one-loop level are included in a full model parameter space. We perform a multiple variable global fit and study the extent to which the parameters of non-alignment and non-degenerate masses can be probed by the precision measurements. We find that the allowed parameter ranges are tightly constrained by the future Higgs precision measurements, especially for small and large values of tan β. Indirect limits on the masses of heavy Higgs can be obtained, which can be complementary to the direct searches of the heavy Higgs bosons at hadron colliders. We also find that the expected accuracies at the Z-pole and at a Higgs factory are quite complementary in constraining mass splittings of heavy Higgs bosons. The typical results are | cos(βα)| < 0.008,mΦ| < 200 GeV, and tan β ∼ 0.2 − 5. The reaches from CEPC, FCC-ee and ILC are also compared, for both Higgs and Z-pole precision measurements.

Keywords

Supersymmetry Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  3. [3]
    G.F. Giudice, Naturally Speaking: The Naturalness Criterion and Physics at the LHC, arXiv:0801.2562 [INSPIRE].
  4. [4]
    G.C. Branco, P.M. Ferreira, L. Lavoura, M.N. Rebelo, M. Sher and J.P. Silva, Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    ATLAS collaboration, Search for additional heavy neutral Higgs and gauge bosons in the ditau final state produced in 36 fb −1 of pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, JHEP 01 (2018) 055 [arXiv:1709.07242] [INSPIRE].
  6. [6]
    CMS collaboration, Search for additional neutral MSSM Higgs bosons in the di-tau final state in pp collisions at \( \sqrt{s}=13 \) TeV, CMS-PAS-HIG-17-020 (2017).
  7. [7]
    ATLAS collaboration, Search for heavy resonances decaying into WW in the eνμν final state in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Eur. Phys. J. C 78 (2018) 24 [arXiv:1710.01123] [INSPIRE].
  8. [8]
    ATLAS collaboration, Search for heavy ZZ resonances in the ℓ + + and \( {\ell}^{+}{\ell}^{-}\nu \overline{\nu} \) final states using proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Eur. Phys. J. C 78 (2018) 293 [arXiv:1712.06386] [INSPIRE].
  9. [9]
    CMS collaboration, Search for a new scalar resonance decaying to a pair of Z bosons in proton-proton collisions at \( \sqrt{s}=13 \) TeV, JHEP 06 (2018) 127 [arXiv:1804.01939] [INSPIRE].
  10. [10]
    ATLAS collaboration, Search for new phenomena in high-mass diphoton final states using 37 fb −1 of proton-proton collisions collected at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Lett. B 775 (2017) 105 [arXiv:1707.04147] [INSPIRE].
  11. [11]
    ATLAS collaboration, Search for heavy resonances decaying into a W or Z boson and a Higgs boson in final states with leptons and b-jets in 36 fb −1 of \( \sqrt{s}=13 \) TeV pp collisions with the ATLAS detector, JHEP 03 (2018) 174 [Erratum ibid. 1811 (2018) 051] [arXiv:1712.06518] [INSPIRE].
  12. [12]
    ATLAS collaboration, Search for a heavy Higgs boson decaying into a Z boson and another heavy Higgs boson in the ℓℓbb final state in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Lett. B 783 (2018) 392 [arXiv:1804.01126] [INSPIRE].
  13. [13]
    CMS collaboration, Search for neutral resonances decaying into a Z boson and a pair of b jets or τ leptons, Phys. Lett. B 759 (2016) 369 [arXiv:1603.02991] [INSPIRE].
  14. [14]
    ATLAS collaboration, Search for Higgs boson pair production in the \( \gamma \gamma b\overline{b} \) final state with 13 TeV pp collision data collected by the ATLAS experiment, JHEP 11 (2018) 040 [arXiv:1807.04873] [INSPIRE].
  15. [15]
    CMS collaboration, Search for Higgs boson pair production in the \( \gamma \gamma \mathrm{b}\overline{\mathrm{b}} \) final state in pp collisions at \( \sqrt{s}=13 \) TeV, Phys. Lett. B 788 (2019) 7 [arXiv:1806.00408] [INSPIRE].
  16. [16]
    ATLAS collaboration, Search for charged Higgs bosons in the H ±tb decay channel in pp collisions at \( \sqrt{s}=13 \) TeV using the ATLAS detector, ATLAS-CONF-2016-089 (2016).
  17. [17]
    ATLAS collaboration, Search for charged Higgs bosons decaying via H ±τ ± ν τ in the τ +jets and τ +lepton final states with 36 fb −1 of pp collision data recorded at \( \sqrt{s}=13 \) TeV with the ATLAS experiment, JHEP 09 (2018) 139 [arXiv:1807.07915] [INSPIRE].
  18. [18]
    CMS collaboration, Search for charged Higgs bosons with the H±τ ± ν τ decay channel in the fully hadronic final state at \( \sqrt{s}=13 \) TeV, CMS-PAS-HIG-16-031 (2016).
  19. [19]
    M. Carena, I. Low, N.R. Shah and C.E.M. Wagner, Impersonating the Standard Model Higgs Boson: Alignment without Decoupling, JHEP 04 (2014) 015 [arXiv:1310.2248] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    P.S. Bhupal Dev and A. Pilaftsis, Maximally Symmetric Two Higgs Doublet Model with Natural Standard Model Alignment, JHEP 12 (2014) 024 [Erratum ibid. 1511 (2015) 147] [arXiv:1408.3405] [INSPIRE].
  21. [21]
    CEPC-SppC Study Group collaboration, CEPC-SPPC Preliminary Conceptual Design Report. 1. Physics and Detector, http://cepc.ihep.ac.cn/preCDR/volume.html (2015).
  22. [22]
    CEPC Study Group collaboration, CEPC Conceptual Design Report. Volume 2. Physics & Detector, arXiv:1811.10545 [INSPIRE].
  23. [23]
    TLEP Design Study Working Group collaboration, First Look at the Physics Case of TLEP, JHEP 01 (2014) 164 [arXiv:1308.6176] [INSPIRE].
  24. [24]
    FCC-ee design study collaboration, http://tlep.web.cern.ch/content/fcc-ee-tlep.
  25. [25]
    M. Benedikt and F. Zimmermann, Future Circular Collider Study, Status and Progress, https://indico.cern.ch/event/550509/contributions/2413230/attachments/1396002/2128079170116-MBE-FCC-Study-Status_ap.pdf (2017).
  26. [26]
    H. Baer et al., The International Linear Collider Technical Design Report. Volume 2: Physics, arXiv:1306.6352 [INSPIRE].
  27. [27]
    ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group and SLD Heavy Flavour Group collaborations, Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [INSPIRE].
  28. [28]
    J. Gu, H. Li, Z. Liu, S. Su and W. Su, Learning from Higgs Physics at Future Higgs Factories, JHEP 12 (2017) 153 [arXiv:1709.06103] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    N. Chen, T. Han, S. Li, S. Su, W. Su and Y. Wu, Implication of Higgs and Z-pole precision measurements on Type I 2HDM, in preparation.Google Scholar
  30. [30]
    S. Gori, J. Gu and L.-T. Wang, The \( Zb\overline{b} \) couplings at future e + e colliders, JHEP 04 (2016) 062 [arXiv:1508.07010] [INSPIRE].ADSGoogle Scholar
  31. [31]
    W. Su and J.M. Yang, SUSY effects in R b : revisited under current experimental constraints, Phys. Lett. B 757 (2016) 136 [arXiv:1601.07758] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    Gfitter Group collaboration, The global electroweak fit at NNLO and prospects for the LHC and ILC, Eur. Phys. J. C 74 (2014) 3046 [arXiv:1407.3792] [INSPIRE].
  33. [33]
    J. Haller, A. Hoecker, R. Kogler, K. Mönig, T. Peiffer and J. Stelzer, Update of the global electroweak fit and constraints on two-Higgs-doublet models, Eur. Phys. J. C 78 (2018) 675 [arXiv:1803.01853] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    D.M. Asner et al., ILC Higgs White Paper, in Proceedings of 2013 Community Summer Study on the Future of U.S. Particle Physics: Snowmass on the Mississippi (CSS2013), Minneapolis U.S.A. (2013) [arXiv:1310.0763] [INSPIRE].
  35. [35]
    M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].ADSGoogle Scholar
  36. [36]
    J. Fan, M. Reece and L.-T. Wang, Possible Futures of Electroweak Precision: ILC, FCC-ee and CEPC, JHEP 09 (2015) 196 [arXiv:1411.1054] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    G.P. Lepage, P.B. Mackenzie and M.E. Peskin, Expected Precision of Higgs Boson Partial Widths within the Standard Model, arXiv:1404.0319 [INSPIRE].
  38. [38]
    M. Baak et al., Working Group Report: Precision Study of Electroweak Interactions, in Proceedings of 2013 Community Summer Study on the Future of U.S. Particle Physics: Snowmass on the Mississippi (CSS2013), Minneapolis U.S.A. (2013) [arXiv:1310.6708] [INSPIRE].
  39. [39]
  40. [40]
    T. Barklow et al., ILC Operating Scenarios, arXiv:1506.07830 [INSPIRE].
  41. [41]
    M. Beneke, D. Boito and Y.-M. Wang, Anomalous Higgs couplings in angular asymmetries of HZℓ + and e + e HZ, JHEP 11 (2014) 028 [arXiv:1406.1361] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    N. Craig, J. Gu, Z. Liu and K. Wang, Beyond Higgs Couplings: Probing the Higgs with Angular Observables at Future e + e Colliders, JHEP 03 (2016) 050 [arXiv:1512.06877] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    G. Durieux, C. Grojean, J. Gu and K. Wang, The leptonic future of the Higgs, JHEP 09 (2017) 014 [arXiv:1704.02333] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    H.E. Haber and D. O’Neil, Basis-independent methods for the two-Higgs-doublet model. II. The Significance of tan β, Phys. Rev. D 74 (2006) 015018 [Erratum ibid. D 74 (2006) 059905] [hep-ph/0602242] [INSPIRE].
  45. [45]
    J. Bernon, J.F. Gunion, H.E. Haber, Y. Jiang and S. Kraml, Scrutinizing the alignment limit in two-Higgs-doublet models: m h = 125 GeV, Phys. Rev. D 92 (2015) 075004 [arXiv:1507.00933] [INSPIRE].ADSGoogle Scholar
  46. [46]
    B. Coleppa, F. Kling and S. Su, Charged Higgs search via AW ± /HW ± channel, JHEP 12 (2014) 148 [arXiv:1408.4119] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    J. Bernon, J.F. Gunion, H.E. Haber, Y. Jiang and S. Kraml, Scrutinizing the alignment limit in two-Higgs-doublet models. II. m H = 125 GeV, Phys. Rev. D 93 (2016) 035027 [arXiv:1511.03682] [INSPIRE].
  48. [48]
    H.E. Haber, Nonminimal Higgs sectors: The Decoupling limit and its phenomenological implications, in Joint U.S.-Polish Workshop on Physics from Planck Scale to Electro-Weak Scale (SUSY 94), Warsaw Poland (1994), pg. 1 [hep-ph/9501320] [INSPIRE].
  49. [49]
    B. Henning, X. Lu and H. Murayama, How to use the Standard Model effective field theory, JHEP 01 (2016) 023 [arXiv:1412.1837] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. [50]
    LHC Higgs Cross Section Working Group collaboration, Handbook of LHC Higgs Cross Sections: 3. Higgs Properties, arXiv:1307.1347 [INSPIRE].
  51. [51]
    B. Coleppa, F. Kling and S. Su, Constraining Type II 2HDM in Light of LHC Higgs Searches, JHEP 01 (2014) 161 [arXiv:1305.0002] [INSPIRE].ADSGoogle Scholar
  52. [52]
    N. Craig, J. Galloway and S. Thomas, Searching for Signs of the Second Higgs Doublet, arXiv:1305.2424 [INSPIRE].
  53. [53]
    V. Barger, L.L. Everett, H.E. Logan and G. Shaughnessy, Scrutinizing the 125 GeV Higgs boson in two Higgs doublet models at the LHC, ILC and Muon Collider, Phys. Rev. D 88 (2013) 115003 [arXiv:1308.0052] [INSPIRE].ADSGoogle Scholar
  54. [54]
    G. Bélanger, B. Dumont, U. Ellwanger, J.F. Gunion and S. Kraml, Global fit to Higgs signal strengths and couplings and implications for extended Higgs sectors, Phys. Rev. D 88 (2013) 075008 [arXiv:1306.2941] [INSPIRE].ADSGoogle Scholar
  55. [55]
    A. Denner, Techniques for calculation of electroweak radiative corrections at the one loop level and results for W physics at LEP-200, Fortsch. Phys. 41 (1993) 307 [arXiv:0709.1075] [INSPIRE].ADSGoogle Scholar
  56. [56]
    S. Kanemura, Y. Okada, E. Senaha and C.P. Yuan, Higgs coupling constants as a probe of new physics, Phys. Rev. D 70 (2004) 115002 [hep-ph/0408364] [INSPIRE].
  57. [57]
    T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE].
  58. [58]
    A. Freitas and D. Stöckinger, Gauge dependence and renormalization of tan beta in the MSSM, Phys. Rev. D 66 (2002) 095014 [hep-ph/0205281] [INSPIRE].
  59. [59]
    M. Krause, R. Lorenz, M. Muhlleitner, R. Santos and H. Ziesche, Gauge-independent Renormalization of the 2-Higgs-Doublet Model, JHEP 09 (2016) 143 [arXiv:1605.04853] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    A. Denner, L. Jenniches, J.-N. Lang and C. Sturm, Gauge-independent M S renormalization in the 2HDM, JHEP 09 (2016) 115 [arXiv:1607.07352] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    L. Altenkamp, S. Dittmaier and H. Rzehak, Renormalization schemes for the Two-Higgs-Doublet Model and applications to hWW/ZZ → 4 fermions, JHEP 09 (2017) 134 [arXiv:1704.02645] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    S. Kanemura, M. Kikuchi, K. Sakurai and K. Yagyu, Gauge invariant one-loop corrections to Higgs boson couplings in non-minimal Higgs models, Phys. Rev. D 96 (2017) 035014 [arXiv:1705.05399] [INSPIRE].ADSGoogle Scholar
  63. [63]
    T. Hahn, S. Paßehr and C. Schappacher, FormCalc 9 and Extensions, PoS(LL2016)068 [arXiv:1604.04611] [INSPIRE].
  64. [64]
    V. Shtabovenko, R. Mertig and F. Orellana, New Developments in FeynCalc 9.0, Comput. Phys. Commun. 207 (2016) 432 [arXiv:1601.01167] [INSPIRE].
  65. [65]
    R. Mertig, M. Böhm and A. Denner, FEYN CALC: Computer algebraic calculation of Feynman amplitudes, Comput. Phys. Commun. 64 (1991) 345 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  66. [66]
    T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].
  67. [67]
    S. Kanemura, M. Kikuchi, K. Sakurai and K. Yagyu, H-COUP: a program for one-loop corrected Higgs boson couplings in non-minimal Higgs sectors, Comput. Phys. Commun. 233 (2018) 134 [arXiv:1710.04603] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  68. [68]
    H.-J. He, N. Polonsky and S.-f. Su, Extra families, Higgs spectrum and oblique corrections, Phys. Rev. D 64 (2001) 053004 [hep-ph/0102144] [INSPIRE].
  69. [69]
    J.F. Gunion and H.E. Haber, The CP conserving two Higgs doublet model: The Approach to the decoupling limit, Phys. Rev. D 67 (2003) 075019 [hep-ph/0207010] [INSPIRE].
  70. [70]
    I.F. Ginzburg and I.P. Ivanov, Tree-level unitarity constraints in the most general 2HDM, Phys. Rev. D 72 (2005) 115010 [hep-ph/0508020] [INSPIRE].
  71. [71]
    ATLAS collaboration, Search for Heavy Higgs Bosons A/H Decaying to a Top Quark Pair in pp Collisions at \( \sqrt{s}=8 \) TeV with the ATLAS Detector, Phys. Rev. Lett. 119 (2017) 191803 [arXiv:1707.06025] [INSPIRE].
  72. [72]
    D. Dicus, A. Stange and S. Willenbrock, Higgs decay to top quarks at hadron colliders, Phys. Lett. B 333 (1994) 126 [hep-ph/9404359] [INSPIRE].
  73. [73]
    M. Carena and Z. Liu, Challenges and opportunities for heavy scalar searches in the \( t\overline{t} \) channel at the LHC, JHEP 11 (2016) 159 [arXiv:1608.07282] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    A. Arbey, F. Mahmoudi, O. Stal and T. Stefaniak, Status of the Charged Higgs Boson in Two Higgs Doublet Models, Eur. Phys. J. C 78 (2018) 182 [arXiv:1706.07414] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    J. Baglio, A. Djouadi and J. Quevillon, Prospects for Higgs physics at energies up to 100 TeV, Rept. Prog. Phys. 79 (2016) 116201 [arXiv:1511.07853] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    N. Craig, J. Hajer, Y.-Y. Li, T. Liu and H. Zhang, Heavy Higgs bosons at low tan β: from the LHC to 100 TeV, JHEP 01 (2017) 018 [arXiv:1605.08744] [INSPIRE].ADSGoogle Scholar
  77. [77]
    B. Coleppa, F. Kling and S. Su, Exotic Higgs Decay via AZ/HZ Channel: a Snowmass Whitepaper, arXiv:1308.6201 [INSPIRE].
  78. [78]
    B. Coleppa, F. Kling and S. Su, Exotic Decays Of A Heavy Neutral Higgs Through HZ/AZ Channel, JHEP 09 (2014) 161 [arXiv:1404.1922] [INSPIRE].ADSGoogle Scholar
  79. [79]
    F. Kling, A. Pyarelal and S. Su, Light Charged Higgs Bosons to AW/HW via Top Decay, JHEP 11 (2015) 051 [arXiv:1504.06624] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    F. Kling, H. Li, A. Pyarelal, H. Song and S. Su, Prospects of Exotic Higgs Decays in 2HDM at 100 TeV pp Collider, in preparation.Google Scholar
  81. [81]
    CMS collaboration, 2HDM Neutral Higgs Future Analysis Studies, CMS-PAS-FTR-13-024 (2013).

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.School of PhysicsNankai UniversityTianjinChina
  2. 2.Department of Physics and AstronomyUniversity of PittsburghPittsburghU.S.A.
  3. 3.Department of Physics, Tsinghua University, and Collaborative Innovation Center of Quantum MatterBeijingChina
  4. 4.Department of PhysicsUniversity of ArizonaTucsonU.S.A.
  5. 5.CAS Key Laboratory of Theoretical Physics, Institute of Theoretical PhysicsChinese Academy of SciencesBeijingChina
  6. 6.School of PhysicsUniversity of Chinese Academy of SciencesBeijingChina
  7. 7.Ottawa-Carleton Institute for PhysicsCarleton UniversityOttawaCanada

Personalised recommendations