Advertisement

Sp(4) gauge theory on the lattice: towards SU(4)/Sp(4) composite Higgs (and beyond)

  • Ed Bennett
  • Deog Ki Hong
  • Jong-Wan Lee
  • C.-J. David Lin
  • Biagio Lucini
  • Maurizio Piai
  • Davide Vadacchino
Open Access
Regular Article - Theoretical Physics

Abstract

The Sp(4) gauge theory with two Dirac fundamental flavours provides a candidate for the microscopic origin of composite-Higgs models based on the SU(4)/Sp(4) coset. We employ a combination of two different, complementary strategies for the numerical lattice calculations, based on the Hybrid Monte Carlo and on the Heat Bath algorithms. We perform pure Yang-Mills, quenched computations and exploratory studies with dynamical Wilson fermions.

We present the first results in the literature for the spectrum of glueballs of the pure Sp(4) Yang-Mills theory, an EFT framework for the interpretation of the masses and decay constants of the lightest pion, vector and axial-vector mesons, and a preliminary calculation of the latter in the quenched approximation. We show the first numerical evidence of a bulk phase transition in the lattice theory with dynamical Wilson fermions, and perform the technical steps necessary to set up future investigations of the mesonic spectrum of the full theory.

Keywords

Lattice Quantum Field Theory Confinement Spontaneous Symmetry Breaking Wilson ’t Hooft and Polyakov loops 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    K. Holland, M. Pepe and U.J. Wiese, The deconfinement phase transition of Sp(2) and Sp(3) Yang-Mills theories in (2 + 1)-dimensions and (3 + 1)-dimensions, Nucl. Phys. B 694 (2004) 35 [hep-lat/0312022] [INSPIRE].
  2. [2]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  3. [3]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  4. [4]
    D.B. Kaplan and H. Georgi, SU(2) × U(1) breaking by vacuum misalignment, Phys. Lett. B 136 (1984) 183 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    H. Georgi and D.B. Kaplan, Composite Higgs and custodial SU(2), Phys. Lett. B 145 (1984) 216 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    M.J. Dugan, H. Georgi and D.B. Kaplan, Anatomy of a composite Higgs model, Nucl. Phys. B 254 (1985) 299 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].
  8. [8]
    E. Katz, A.E. Nelson and D.G.E. Walker, The intermediate Higgs, JHEP 08 (2005) 074 [hep-ph/0504252] [INSPIRE].
  9. [9]
    R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models, Phys. Rev. D 75 (2007) 055014 [hep-ph/0612048] [INSPIRE].
  10. [10]
    R. Barbieri, B. Bellazzini, V.S. Rychkov and A. Varagnolo, The Higgs boson from an extended symmetry, Phys. Rev. D 76 (2007) 115008 [arXiv:0706.0432] [INSPIRE].ADSGoogle Scholar
  11. [11]
    P. Lodone, Vector-like quarks in a ‘composite’ Higgs model, JHEP 12 (2008) 029 [arXiv:0806.1472] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    G. Ferretti and D. Karateev, Fermionic UV completions of composite Higgs models, JHEP 03 (2014) 077 [arXiv:1312.5330] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    G. Cacciapaglia and F. Sannino, Fundamental composite (Goldstone) Higgs dynamics, JHEP 04 (2014) 111 [arXiv:1402.0233] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  14. [14]
    A. Arbey, G. Cacciapaglia, H. Cai, A. Deandrea, S. Le Corre and F. Sannino, Fundamental composite electroweak dynamics: status at the LHC, Phys. Rev. D 95 (2017) 015028 [arXiv:1502.04718] [INSPIRE].ADSGoogle Scholar
  15. [15]
    L. Vecchi, A dangerous irrelevant UV-completion of the composite Higgs, JHEP 02 (2017) 094 [arXiv:1506.00623] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  16. [16]
    G. Panico and A. Wulzer, The composite Nambu-Goldstone Higgs, Lect. Notes Phys. 913 (2016) 1 [arXiv:1506.01961] [INSPIRE].CrossRefzbMATHGoogle Scholar
  17. [17]
    G. Ferretti, Gauge theories of partial compositeness: scenarios for run-II of the LHC, JHEP 06 (2016) 107 [arXiv:1604.06467] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    A. Agugliaro, O. Antipin, D. Becciolini, S. De Curtis and M. Redi, UV complete composite Higgs models, Phys. Rev. D 95 (2017) 035019 [arXiv:1609.07122] [INSPIRE].ADSGoogle Scholar
  19. [19]
    T. Alanne, D. Buarque Franzosi and M.T. Frandsen, A partially composite Goldstone Higgs, Phys. Rev. D 96 (2017) 095012 [arXiv:1709.10473] [INSPIRE].ADSGoogle Scholar
  20. [20]
    F. Feruglio, B. Gavela, K. Kanshin, P.A.N. Machado, S. Rigolin and S. Saa, The minimal linear σ-model for the Goldstone Higgs, JHEP 06 (2016) 038 [arXiv:1603.05668] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    S. Fichet, G. von Gersdorff, E. Pontón and R. Rosenfeld, The excitation of the global symmetry-breaking vacuum in composite Higgs models, JHEP 09 (2016) 158 [arXiv:1607.03125] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    J. Galloway, A.L. Kagan and A. Martin, A UV complete partially composite-PNGB Higgs, Phys. Rev. D 95 (2017) 035038 [arXiv:1609.05883] [INSPIRE].ADSGoogle Scholar
  23. [23]
    T. Alanne, D. Buarque Franzosi, M.T. Frandsen, M.L.A. Kristensen, A. Meroni and M. Rosenlyst, Partially composite Higgs models: phenomenology and RG analysis, JHEP 01 (2018) 051 [arXiv:1711.10410] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  24. [24]
    C. Csáki, T. Ma and J. Shu, Maximally symmetric composite Higgs models, Phys. Rev. Lett. 119 (2017) 131803 [arXiv:1702.00405] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    M. Chala, G. Durieux, C. Grojean, L. de Lima and O. Matsedonskyi, Minimally extended SILH, JHEP 06 (2017) 088 [arXiv:1703.10624] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  26. [26]
    B. Gripaios, A. Pomarol, F. Riva and J. Serra, Beyond the minimal composite Higgs model, JHEP 04 (2009) 070 [arXiv:0902.1483] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    J. Barnard, T. Gherghetta and T.S. Ray, UV descriptions of composite Higgs models without elementary scalars, JHEP 02 (2014) 002 [arXiv:1311.6562] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    R. Lewis, C. Pica and F. Sannino, Light asymmetric dark matter on the lattice: SU(2) technicolor with two fundamental flavors, Phys. Rev. D 85 (2012) 014504 [arXiv:1109.3513] [INSPIRE].ADSGoogle Scholar
  29. [29]
    A. Hietanen, R. Lewis, C. Pica and F. Sannino, Fundamental composite Higgs dynamics on the lattice: SU(2) with two flavors, JHEP 07 (2014) 116 [arXiv:1404.2794] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    R. Arthur, V. Drach, M. Hansen, A. Hietanen, C. Pica and F. Sannino, SU(2) gauge theory with two fundamental flavors: a minimal template for model building, Phys. Rev. D 94 (2016) 094507 [arXiv:1602.06559] [INSPIRE].ADSGoogle Scholar
  31. [31]
    R. Arthur, V. Drach, A. Hietanen, C. Pica and F. Sannino, SU(2) gauge theory with two fundamental flavours: scalar and pseudoscalar spectrum, arXiv:1607.06654 [INSPIRE].
  32. [32]
    C. Pica, V. Drach, M. Hansen and F. Sannino, Composite Higgs dynamics on the lattice, EPJ Web Conf. 137 (2017) 10005 [arXiv:1612.09336] [INSPIRE].CrossRefGoogle Scholar
  33. [33]
    W. Detmold, M. McCullough and A. Pochinsky, Dark nuclei. II. Nuclear spectroscopy in two-color QCD, Phys. Rev. D 90 (2014) 114506 [arXiv:1406.4116] [INSPIRE].
  34. [34]
    J.-W. Lee, B. Lucini and M. Piai, Symmetry restoration at high-temperature in two-color and two-flavor lattice gauge theories, JHEP 04 (2017) 036 [arXiv:1701.03228] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    G. Cacciapaglia, H. Cai, A. Deandrea, T. Flacke, S.J. Lee and A. Parolini, Composite scalars at the LHC: the Higgs, the sextet and the octet, JHEP 11 (2015) 201 [arXiv:1507.02283] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    D.K. Hong, Very light dilaton and naturally light Higgs boson, arXiv:1703.05081 [INSPIRE].
  37. [37]
    M. Golterman and Y. Shamir, Effective potential in ultraviolet completions for composite Higgs models, arXiv:1707.06033 [INSPIRE].
  38. [38]
    N. Bizot, M. Frigerio, M. Knecht and J.-L. Kneur, Nonperturbative analysis of the spectrum of meson resonances in an ultraviolet-complete composite-Higgs model, Phys. Rev. D 95 (2017) 075006 [arXiv:1610.09293] [INSPIRE].ADSGoogle Scholar
  39. [39]
    B. Lucini and M. Panero, SU(N) gauge theories at large N, Phys. Rept. 526 (2013) 93 [arXiv:1210.4997] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    B. Lucini, M. Teper and U. Wenger, Glueballs and k-strings in SU(N) gauge theories: calculations with improved operators, JHEP 06 (2004) 012 [hep-lat/0404008] [INSPIRE].
  41. [41]
    A. Athenodorou, R. Lau and M. Teper, On the weak N-dependence of SO(N) and SU(N) gauge theories in 2 + 1 dimensions, Phys. Lett. B 749 (2015) 448 [arXiv:1504.08126] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    R. Lau and M. Teper, SO(N) gauge theories in 2 + 1 dimensions: glueball spectra and confinement, JHEP 10 (2017) 022 [arXiv:1701.06941] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    A. Athenodorou et al., Large mass hierarchies from strongly-coupled dynamics, JHEP 06 (2016) 114 [arXiv:1605.04258] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    D.K. Hong, J.-W. Lee, B. Lucini, M. Piai and D. Vadacchino, Casimir scaling and Yang-Mills glueballs, Phys. Lett. B 775 (2017) 89 [arXiv:1705.00286] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    M. Bando, T. Kugo, S. Uehara, K. Yamawaki and T. Yanagida, Is ρ meson a dynamical gauge boson of hidden local symmetry?, Phys. Rev. Lett. 54 (1985) 1215 [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    R. Casalbuoni, S. De Curtis, D. Dominici and R. Gatto, Effective weak interaction theory with possible new vector resonance from a strong Higgs sector, Phys. Lett. B 155 (1985) 95 [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    M. Bando, T. Kugo and K. Yamawaki, Nonlinear realization and hidden local symmetries, Phys. Rept. 164 (1988) 217 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    R. Casalbuoni, S. De Curtis, D. Dominici, F. Feruglio and R. Gatto, Vector and axial vector bound states from a strongly interacting electroweak sector, Int. J. Mod. Phys. A 4 (1989) 1065 [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    M. Harada and K. Yamawaki, Hidden local symmetry at loop: a new perspective of composite gauge boson and chiral phase transition, Phys. Rept. 381 (2003) 1 [hep-ph/0302103] [INSPIRE].
  50. [50]
    H. Georgi, Vector realization of chiral symmetry, Nucl. Phys. B 331 (1990) 311 [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    T. Appelquist, P.S. Rodrigues da Silva and F. Sannino, Enhanced global symmetries and the chiral phase transition, Phys. Rev. D 60 (1999) 116007 [hep-ph/9906555] [INSPIRE].
  52. [52]
    M. Piai, A. Pierce and J.G. Wacker, Composite vector mesons from QCD to the little Higgs, hep-ph/0405242 [INSPIRE].
  53. [53]
    D. Buarque Franzosi, G. Cacciapaglia, H. Cai, A. Deandrea and M. Frandsen, Vector and axial-vector resonances in composite models of the Higgs boson, JHEP 11 (2016) 076 [arXiv:1605.01363] [INSPIRE].CrossRefGoogle Scholar
  54. [54]
    T. DeGrand, M. Golterman, E.T. Neil and Y. Shamir, One-loop chiral perturbation theory with two fermion representations, Phys. Rev. D 94 (2016) 025020 [arXiv:1605.07738] [INSPIRE].ADSMathSciNetGoogle Scholar
  55. [55]
    M. Lüscher, Signatures of unstable particles in finite volume, Nucl. Phys. B 364 (1991) 237 [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    X. Feng, K. Jansen and D.B. Renner, Resonance parameters of the ρ-meson from lattice QCD, Phys. Rev. D 83 (2011) 094505 [arXiv:1011.5288] [INSPIRE].ADSGoogle Scholar
  57. [57]
    L. Del Debbio, A. Patella and C. Pica, Higher representations on the lattice: numerical simulations. SU(2) with adjoint fermions, Phys. Rev. D 81 (2010) 094503 [arXiv:0805.2058] [INSPIRE].
  58. [58]
    N. Cabibbo and E. Marinari, A new method for updating SU(N) matrices in computer simulations of gauge theories, Phys. Lett. B 119 (1982) 387 [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    T. Takaishi, Choice of integrator in the hybrid Monte Carlo algorithm, Comput. Phys. Commun. 133 (2000) 6 [hep-lat/9909134] [INSPIRE].
  60. [60]
    M. Creutz, Global Monte Carlo algorithms for many-fermion systems, Phys. Rev. D 38 (1988) 1228 [INSPIRE].ADSGoogle Scholar
  61. [61]
    M. Lüscher, Trivializing maps, the Wilson flow and the HMC algorithm, Commun. Math. Phys. 293 (2010) 899 [arXiv:0907.5491] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  62. [62]
    M. Lüscher, Properties and uses of the Wilson flow in lattice QCD, JHEP 08 (2010) 071 [Erratum ibid. 03 (2014) 092] [arXiv:1006.4518] [INSPIRE].
  63. [63]
    M. Lüscher and P. Weisz, Perturbative analysis of the gradient flow in non-Abelian gauge theories, JHEP 02 (2011) 051 [arXiv:1101.0963] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  64. [64]
    K. Fujikawa, The gradient flow in λϕ 4 theory, JHEP 03 (2016) 021 [arXiv:1601.01578] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    S. Borsányi et al., High-precision scale setting in lattice QCD, JHEP 09 (2012) 010 [arXiv:1203.4469] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    Z. Fodor, K. Holland, J. Kuti, S. Mondal, D. Nogradi and C.H. Wong, The lattice gradient flow at tree-level and its improvement, JHEP 09 (2014) 018 [arXiv:1406.0827] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  67. [67]
    A. Ramos and S. Sint, Symanzik improvement of the gradient flow in lattice gauge theories, Eur. Phys. J. C 76 (2016) 15 [arXiv:1508.05552] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    C.-J.D. Lin, K. Ogawa and A. Ramos, The Yang-Mills gradient flow and SU(3) gauge theory with 12 massless fundamental fermions in a colour-twisted box, JHEP 12 (2015) 103 [arXiv:1510.05755] [INSPIRE].ADSzbMATHGoogle Scholar
  69. [69]
    M. Lüscher and S. Schaefer, Lattice QCD without topology barriers, JHEP 07 (2011) 036 [arXiv:1105.4749] [INSPIRE].CrossRefzbMATHGoogle Scholar
  70. [70]
    D. Galletly et al., Hadron spectrum, quark masses and decay constants from light overlap fermions on large lattices, Phys. Rev. D 75 (2007) 073015 [hep-lat/0607024] [INSPIRE].
  71. [71]
    M. Lüscher, K. Symanzik and P. Weisz, Anomalies of the free loop wave equation in the WKB approximation, Nucl. Phys. B 173 (1980) 365 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  72. [72]
    J. Polchinski and A. Strominger, Effective string theory, Phys. Rev. Lett. 67 (1991) 1681 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  73. [73]
    M. Lüscher, Symmetry breaking aspects of the roughening transition in gauge theories, Nucl. Phys. B 180 (1981) 317 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  74. [74]
    B. Lucini and M. Teper, Confining strings in SU(N) gauge theories, Phys. Rev. D 64 (2001) 105019 [hep-lat/0107007] [INSPIRE].
  75. [75]
    S. Necco and R. Sommer, The N f = 0 heavy quark potential from short to intermediate distances, Nucl. Phys. B 622 (2002) 328 [hep-lat/0108008] [INSPIRE].
  76. [76]
    A. Athenodorou, B. Bringoltz and M. Teper, Closed flux tubes and their string description in D = 3 + 1 SU(N) gauge theories, JHEP 02 (2011) 030 [arXiv:1007.4720] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  77. [77]
    M. Lüscher and P. Weisz, String excitation energies in SU(N) gauge theories beyond the free-string approximation, JHEP 07 (2004) 014 [hep-th/0406205] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  78. [78]
    O. Aharony and E. Karzbrun, On the effective action of confining strings, JHEP 06 (2009) 012 [arXiv:0903.1927] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  79. [79]
    J.M. Drummond, Universal subleading spectrum of effective string theory, hep-th/0411017 [INSPIRE].
  80. [80]
    N.D. Hari Dass and P. Matlock, Universality of correction to Lüscher term in Polchinski-Strominger effective string theories, hep-th/0606265 [INSPIRE].
  81. [81]
    J.M. Drummond, Reply to hep-th/0606265, hep-th/0608109 [INSPIRE].
  82. [82]
    N.D.H. Dass and P. Matlock, Our response to the response hep-th/0608109 by Drummond, hep-th/0611215 [INSPIRE].
  83. [83]
    O. Aharony and Z. Komargodski, The effective theory of long strings, JHEP 05 (2013) 118 [arXiv:1302.6257] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  84. [84]
    S. Dubovsky and V. Gorbenko, Towards a theory of the QCD string, JHEP 02 (2016) 022 [arXiv:1511.01908] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    B. Berg and A. Billoire, Glueball spectroscopy in four-dimensional SU(3) lattice gauge theory. 1, Nucl. Phys. B 221 (1983) 109 [INSPIRE].
  86. [86]
    C.J. Morningstar and M.J. Peardon, Efficient glueball simulations on anisotropic lattices, Phys. Rev. D 56 (1997) 4043 [hep-lat/9704011] [INSPIRE].
  87. [87]
    C.J. Morningstar and M.J. Peardon, The glueball spectrum from an anisotropic lattice study, Phys. Rev. D 60 (1999) 034509 [hep-lat/9901004] [INSPIRE].
  88. [88]
    J. Hoek, M. Teper and J. Waterhouse, Topological fluctuations and susceptibility in SU(3) lattice gauge theory, Nucl. Phys. B 288 (1987) 589 [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    B. Lucini, A. Rago and E. Rinaldi, Glueball masses in the large N limit, JHEP 08 (2010) 119 [arXiv:1007.3879] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  90. [90]
    B. Lucini and M. Teper, SU(N) gauge theories in four-dimensions: exploring the approach to N = ∞, JHEP 06 (2001) 050 [hep-lat/0103027] [INSPIRE].
  91. [91]
    C.W. Bernard and M.F.L. Golterman, Chiral perturbation theory for the quenched approximation of QCD, Phys. Rev. D 46 (1992) 853 [hep-lat/9204007] [INSPIRE].
  92. [92]
    S.R. Sharpe, Quenched chiral logarithms, Phys. Rev. D 46 (1992) 3146 [hep-lat/9205020] [INSPIRE].
  93. [93]
    S.R. Sharpe and N. Shoresh, Physical results from unphysical simulations, Phys. Rev. D 62 (2000) 094503 [hep-lat/0006017] [INSPIRE].
  94. [94]
    S.R. Sharpe and N. Shoresh, Partially quenched chiral perturbation theory without Φ0, Phys. Rev. D 64 (2001) 114510 [hep-lat/0108003] [INSPIRE].
  95. [95]
    C.W. Bernard and M.F.L. Golterman, Partially quenched gauge theories and an application to staggered fermions, Phys. Rev. D 49 (1994) 486 [hep-lat/9306005] [INSPIRE].
  96. [96]
    G. Martinelli and Y.-C. Zhang, The connection between local operators on the lattice and in the continuum and its relation to meson decay constants, Phys. Lett. B 123 (1983) 433 [INSPIRE].ADSCrossRefGoogle Scholar
  97. [97]
    G.P. Lepage and P.B. Mackenzie, On the viability of lattice perturbation theory, Phys. Rev. D 48 (1993) 2250 [hep-lat/9209022] [INSPIRE].
  98. [98]
    P.A. Boyle, A. Juttner, C. Kelly and R.D. Kenway, Use of stochastic sources for the lattice determination of light quark physics, JHEP 08 (2008) 086 [arXiv:0804.1501] [INSPIRE].Google Scholar
  99. [99]
    E. Bennett et al., Higgs compositeness in Sp(2N) gauge theories — determining the low-energy constants with lattice calculations, in 35th International Symposium on Lattice Field Theory (Lattice 2017), Granada Spain, 18–24 June 2017 [arXiv:1710.06941] [INSPIRE].
  100. [100]
    E. Bennett et al., Higgs compositeness in Sp(2N ) gauge theories — resymplecticisation, scale setting and topology, in 35th International Symposium on Lattice Field Theory (Lattice 2017), Granada Spain, 18–24 June 2017 [arXiv:1710.06715] [INSPIRE].
  101. [101]
    E. Bennett et al., Higgs compositeness in Sp(2N ) gauge theories — the pure gauge model, in 35th International Symposium on Lattice Field Theory (Lattice 2017), Granada Spain, 18–24 June 2017 [arXiv:1710.07043] [INSPIRE].
  102. [102]
    V. Ayyar et al., Spectroscopy of SU(4) composite Higgs theory with two distinct fermion representations, arXiv:1710.00806 [INSPIRE].
  103. [103]
    T. DeGrand and Y. Shamir, One-loop anomalous dimension of top-partner hyperbaryons in a family of composite Higgs models, Phys. Rev. D 92 (2015) 075039 [arXiv:1508.02581] [INSPIRE].ADSGoogle Scholar
  104. [104]
    R. Slansky, Group theory for unified model building, Phys. Rept. 79 (1981) 1 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  105. [105]
    R. Barbieri, A. Pomarol, R. Rattazzi and A. Strumia, Electroweak symmetry breaking after LEP-1 and LEP-2, Nucl. Phys. B 703 (2004) 127 [hep-ph/0405040] [INSPIRE].
  106. [106]
    M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].ADSGoogle Scholar
  107. [107]
    LSD collaboration, T. Appelquist et al., Parity doubling and the S parameter below the conformal window, Phys. Rev. Lett. 106 (2011) 231601 [arXiv:1009.5967] [INSPIRE].
  108. [108]
    RBC and UKQCD collaborations, P.A. Boyle, L. Del Debbio, J. Wennekers and J.M. Zanotti, The S parameter in QCD from domain wall fermions, Phys. Rev. D 81 (2010) 014504 [arXiv:0909.4931] [INSPIRE].
  109. [109]
    Particle Data Group collaboration, C. Patrignani et al., Review of particle physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of Physics, College of ScienceSwansea UniversitySwanseaU.K.
  2. 2.Swansea Academy of Advanced ComputingSwansea UniversitySwanseaU.K.
  3. 3.Department of PhysicsPusan National UniversityBusanKorea
  4. 4.Extreme Physics InstitutePusan National UniversityBusanKorea
  5. 5.Institute of PhysicsNational Chiao-Tung UniversityHsinchuTaiwan
  6. 6.Department of Mathematics, College of ScienceSwansea UniversitySwanseaU.K.
  7. 7.INFN, Sezione di PisaPisaItaly

Personalised recommendations