Fully-differential top-pair production at a lepton collider: from threshold to continuum

  • Fabian Bach
  • Bijan Chokoufé Nejad
  • André H. Hoang
  • Wolfgang Kilian
  • Jürgen Reuter
  • Maximilian Stahlhofen
  • Thomas Teubner
  • Christian Weiss
Open Access
Regular Article - Theoretical Physics


We present an approach to predict exclusive \( {W}^{+}b{W}^{-}\overline{b} \) production at lepton colliders that correctly describes the top-anti-top threshold as well as the continuum region. We incorporate \( t\overline{t} \) form factors for the NLL threshold resummation derived in NRQCD into a factorized relativistic cross section using an extended double-pole approximation, which accounts for fixed-order QCD corrections to the top decays at NLO. This is combined with the full fixed-order QCD result at NLO for \( {W}^{+}b{W}^{-}\overline{b} \) production to obtain predictions that are not only valid at threshold but smoothly transition to the continuum region. Our implementation is based on the Monte Carlo event generator Whizard and the code Toppik and allows to compute fully-differential threshold-resummed cross sections including the interference with non-resonant background processes. For the first time it is now possible to systematically study general differential observables at future lepton colliders involving the decay products of the top quarks at energies close to the pair production threshold and beyond.


Heavy Quark Physics Perturbative QCD Quark Masses and SM Parameters 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    W.E. Caswell and G.P. Lepage, Effective Lagrangians for Bound State Problems in QED, QCD and Other Field Theories, Phys. Lett. B 167 (1986) 437 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    G.T. Bodwin, E. Braaten and G.P. Lepage, Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium, Phys. Rev. D 51 (1995) 1125 [Erratum ibid. D 55 (1997) 5853] [hep-ph/9407339] [INSPIRE].
  3. [3]
    A.H. Hoang and T. Teubner, Top quark pair production at threshold: Complete next-to-next-to-leading order relativistic corrections, Phys. Rev. D 58 (1998) 114023 [hep-ph/9801397] [INSPIRE].
  4. [4]
    A.H. Hoang et al., Top - anti-top pair production close to threshold: Synopsis of recent NNLO results, Eur. Phys. J. direct 2 (2000) 3 [hep-ph/0001286] [INSPIRE].
  5. [5]
    M. Beneke, Y. Kiyo, P. Marquard, A. Penin, J. Piclum and M. Steinhauser, Next-to-Next-to-Next-to-Leading Order QCD Prediction for the Top Antitop S-Wave Pair Production Cross section Near Threshold in e + e Annihilation, Phys. Rev. Lett. 115 (2015) 192001 [arXiv:1506.06864] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    A. Pineda and J. Soto, Effective field theory for ultrasoft momenta in NRQCD and NRQED, Nucl. Phys. Proc. Suppl. 64 (1998) 428 [hep-ph/9707481] [INSPIRE].
  7. [7]
    N. Brambilla, A. Pineda, J. Soto and A. Vairo, Potential NRQCD: An Effective theory for heavy quarkonium, Nucl. Phys. B 566 (2000) 275 [hep-ph/9907240] [INSPIRE].
  8. [8]
    M.E. Luke, A.V. Manohar and I.Z. Rothstein, Renormalization group scaling in nonrelativistic QCD, Phys. Rev. D 61 (2000) 074025 [hep-ph/9910209] [INSPIRE].
  9. [9]
    A.V. Manohar and I.W. Stewart, Renormalization group analysis of the QCD quark potential to order v 2, Phys. Rev. D 62 (2000) 014033 [hep-ph/9912226] [INSPIRE].
  10. [10]
    A.H. Hoang and I.W. Stewart, Ultrasoft renormalization in nonrelativistic QCD, Phys. Rev. D 67 (2003) 114020 [hep-ph/0209340] [INSPIRE].
  11. [11]
    A.H. Hoang and M. Stahlhofen, The Top-Antitop Threshold at the ILC: NNLL QCD Uncertainties, JHEP 05 (2014) 121 [arXiv:1309.6323] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    A. Hoang, P. Ruiz-Femenia and M. Stahlhofen, Renormalization Group Improved Bottom Mass from Upsilon Sum Rules at NNLL Order, JHEP 10 (2012) 188 [arXiv:1209.0450] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    M. Jezabek, J.H. Kühn and T. Teubner, Momentum distributions in \( t\overline{t} \) production and decay near threshold, Z. Phys. C 56 (1992) 653 [INSPIRE].ADSGoogle Scholar
  14. [14]
    R. Harlander, M. Jezabek, J.H. Kühn and T. Teubner, Polarization in top quark pair production near threshold, Phys. Lett. B 346 (1995) 137 [hep-ph/9411395] [INSPIRE].
  15. [15]
    A.H. Hoang and T. Teubner, Top quark pair production close to threshold: Top mass, width and momentum distribution, Phys. Rev. D 60 (1999) 114027 [hep-ph/9904468] [INSPIRE].
  16. [16]
    V.S. Fadin and V.A. Khoze, Threshold Behavior of Heavy Top Production in e + e Collisions, JETP Lett. 46 (1987) 525 [INSPIRE].ADSGoogle Scholar
  17. [17]
    M.J. Strassler and M.E. Peskin, The heavy top quark threshold: QCD and the Higgs, Phys. Rev. D 43 (1991) 1500 [INSPIRE].ADSGoogle Scholar
  18. [18]
    A.H. Hoang and C.J. Reisser, Electroweak absorptive parts in NRQCD matching conditions, Phys. Rev. D 71 (2005) 074022 [hep-ph/0412258] [INSPIRE].
  19. [19]
    A.H. Hoang, C.J. Reisser and P. Ruiz-Femenia, Phase Space Matching and Finite Lifetime Effects for Top-Pair Production Close to Threshold, Phys. Rev. D 82 (2010) 014005 [arXiv:1002.3223] [INSPIRE].ADSGoogle Scholar
  20. [20]
    M. Beneke, B. Jantzen and P. Ruiz-Femenia, Electroweak non-resonant NLO corrections to \( {e}^{+}{e}^{-}\to {W}^{+}{W}^{-}b\overline{b} \) in the \( t\overline{t} \) resonance region, Nucl. Phys. B 840 (2010) 186 [arXiv:1004.2188] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  21. [21]
    M. Beneke, A. Maier, T. Rauh and P. Ruiz-Femenia, Non-resonant and electroweak NNLO correction to the e + e top anti-top threshold, JHEP 02 (2018) 125 [arXiv:1711.10429] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    A.A. Penin and J.H. Piclum, Threshold production of unstable top, JHEP 01 (2012) 034 [arXiv:1110.1970] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  23. [23]
    B. Jantzen and P. Ruiz-Femenía, Next-to-next-to-leading order nonresonant corrections to threshold top-pair production from e + e collisions: Endpoint-singular terms, Phys. Rev. D 88 (2013) 054011 [arXiv:1307.4337] [INSPIRE].
  24. [24]
    R.J. Guth and J.H. Kühn, Top quark threshold and radiative corrections, Nucl. Phys. B 368 (1992) 38 [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    A.H. Hoang and C.J. Reisser, On electroweak matching conditions for top pair production at threshold, Phys. Rev. D 74 (2006) 034002 [hep-ph/0604104] [INSPIRE].
  26. [26]
    J. Fuster, I. García, P. Gomis, M. Perelló, E. Ros and M. Vos, Study of single top production at high energy electron positron colliders, Eur. Phys. J. C 75 (2015) 223 [arXiv:1411.2355] [INSPIRE].
  27. [27]
    A.H. Hoang, V. Mateu and S. Mohammad Zebarjad, Heavy Quark Vacuum Polarization Function at O(α s2) and O(α s3), Nucl. Phys. B 813 (2009) 349 [arXiv:0807.4173] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  28. [28]
    Y. Kiyo, A. Maier, P. Maierhöfer and P. Marquard, Reconstruction of heavy quark current correlators at O(α s3), Nucl. Phys. B 823 (2009) 269 [arXiv:0907.2120] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  29. [29]
    J. Gao and H.X. Zhu, Top Quark Forward-Backward Asymmetry in e + e Annihilation at Next-to-Next-to-Leading Order in QCD, Phys. Rev. Lett. 113 (2014) 262001 [arXiv:1410.3165] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    L. Chen, O. Dekkers, D. Heisler, W. Bernreuther and Z.-G. Si, Top-quark pair production at next-to-next-to-leading order QCD in electron positron collisions, JHEP 12 (2016) 098 [arXiv:1610.07897] [INSPIRE].ADSGoogle Scholar
  31. [31]
    L. Guo, W.-G. Ma, R.-Y. Zhang and S.-M. Wang, One-loop QCD corrections to the \( {e}^{+}{e}^{-}\to {W}^{+}{W}^{-}b\overline{b} \) process at the ILC, Phys. Lett. B 662 (2008) 150 [arXiv:0802.4124] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    S. Liebler, G. Moortgat-Pick and A.S. Papanastasiou, Probing the top-quark width through ratios of resonance contributions of \( {e}^{+}{e}^{-}\to {W}^{+}{W}^{-}b\overline{b} \), JHEP 03 (2016) 099 [arXiv:1511.02350] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    B. Chokoufé Nejad, W. Kilian, J.M. Lindert, S. Pozzorini, J. Reuter and C. Weiss, NLO QCD predictions for off-shell \( t\overline{t}\kern0.5em and\kern0.5em t\overline{t}H \) production and decay at a linear collider, JHEP 12 (2016) 075 [arXiv:1609.03390] [INSPIRE].CrossRefGoogle Scholar
  34. [34]
    K. Seidel, F. Simon, M. Tesar and S. Poss, Top quark mass measurements at and above threshold at CLIC, Eur. Phys. J. C 73 (2013) 2530 [arXiv:1303.3758] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    F. Simon, A First Look at the Impact of NNNLO Theory Uncertainties on Top Mass Measurements at the ILC, in Proceedings, International Workshop on Future Linear Colliders (LCWS15), Whistler, B.C., Canada, November 02–06, 2015 (2016) [arXiv:1603.04764] [INSPIRE].
  36. [36]
    A. Pineda and A. Signer, Heavy Quark Pair Production near Threshold with Potential Non-Relativistic QCD, Nucl. Phys. B 762 (2007) 67 [hep-ph/0607239] [INSPIRE].
  37. [37]
    R. Harlander, M. Jezabek, J.H. Kühn and M. Peter, Top quark polarization in polarized e + e annihilation near threshold, Z. Phys. C 73 (1997) 477 [hep-ph/9604328] [INSPIRE].
  38. [38]
    M. Jezabek, T. Nagano and Y. Sumino, Probe of CP-violation in \( {e}^{+}{e}^{-}\to t\overline{t} \) near threshold, Phys. Rev. D 62 (2000) 014034 [hep-ph/0001322] [INSPIRE].
  39. [39]
    A.H. Hoang, C.J. Reisser and P. Ruiz-Femenia, Implementing invariant mass cuts and finite lifetime effects in top-antitop production at threshold, Nucl. Phys. Proc. Suppl. 186 (2009) 403 [arXiv:0810.2934] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    F. Simon, Impact of Theory Uncertainties on the Precision of the Top Quark Mass in a Threshold Scan at Future e + e Colliders, PoS(ICHEP2016)872 [arXiv:1611.03399] [INSPIRE].
  41. [41]
    F. Bach and M. Stahlhofen, Top pair threshold production at a linear collider with WHIZARD, in Proceedings, 7th International Workshop on Top Quark Physics (TOP2014), Cannes, France, September 28–October 3, 2014 [arXiv:1411.7318] [INSPIRE].
  42. [42]
    V.S. Fadin, V.A. Khoze and A.D. Martin, Interference radiative phenomena in the production of heavy unstable particles, Phys. Rev. D 49 (1994) 2247 [INSPIRE].ADSGoogle Scholar
  43. [43]
    K. Melnikov and O.I. Yakovlev, Top near threshold: All α s corrections are trivial, Phys. Lett. B 324 (1994) 217 [hep-ph/9302311] [INSPIRE].
  44. [44]
    M. Peter and Y. Sumino, Final state interactions in \( {e}^{+}{e}^{-}\to t\overline{t}\to b{\ell}^{+}\nu \overline{b}{W}^{-} \) near top quark threshold, Phys. Rev. D 57 (1998) 6912 [hep-ph/9708223] [INSPIRE].
  45. [45]
    A. Widl, B. Dehnadi, A.H. Hoang, V. Mateu and M. Stahlhofen, in preparation.Google Scholar
  46. [46]
    C. Farrell and A.H. Hoang, The Large Higgs energy region in Higgs associated top pair production at the linear collider, Phys. Rev. D 72 (2005) 014007 [hep-ph/0504220] [INSPIRE].
  47. [47]
    C. Farrell and A.H. Hoang, Next-to-leading-logarithmic QCD corrections to the cross-section \( \sigma \left({e}^{+}{e}^{-}\to t\overline{t}H\right) \) at 500 GeV, Phys. Rev. D 74 (2006) 014008 [hep-ph/0604166] [INSPIRE].
  48. [48]
    K. Hagiwara, K. Ma and H. Yokoya, Probing CP-violation in e + e production of the Higgs boson and toponia, JHEP 06 (2016) 048 [arXiv:1602.00684] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    Y. Sumino and H. Yokoya, Bound-state effects on kinematical distributions of top quarks at hadron colliders, JHEP 09 (2010) 034 [Erratum ibid. 06 (2016) 037] [arXiv:1007.0075] [INSPIRE].
  50. [50]
    W. Fischler, Quark-anti-Quark Potential in QCD, Nucl. Phys. B 129 (1977) 157 [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    A.H. Hoang, A.V. Manohar, I.W. Stewart and T. Teubner, The Threshold \( t\overline{t} \) cross-section at NNLL order, Phys. Rev. D 65 (2002) 014014 [hep-ph/0107144] [INSPIRE].
  52. [52]
    P. Marquard, J.H. Piclum, D. Seidel and M. Steinhauser, Three-loop matching of the vector current, Phys. Rev. D 89 (2014) 034027 [arXiv:1401.3004] [INSPIRE].ADSMATHGoogle Scholar
  53. [53]
    M. Beneke, J. Piclum and T. Rauh, P-wave contribution to third-order top-quark pair production near threshold, Nucl. Phys. B 880 (2014) 414 [arXiv:1312.4792] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  54. [54]
    A. Pineda, Next-to-leading log renormalization group running in heavy-quarkonium creation and annihilation, Phys. Rev. D 66 (2002) 054022 [hep-ph/0110216] [INSPIRE].
  55. [55]
    A.H. Hoang and M. Stahlhofen, Two-loop ultrasoft running of the \( \mathcal{O}\left({v}^2\right) \) QCD quark potentials, Phys. Rev. D 75 (2007) 054025 [hep-ph/0611292] [INSPIRE].
  56. [56]
    A.H. Hoang and M. Stahlhofen, Ultrasoft NLL Running of the Nonrelativistic \( \mathcal{O}(v) \) QCD Quark Potential, JHEP 06 (2011) 088 [arXiv:1102.0269] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  57. [57]
    A.H. Hoang and P. Ruiz-Femenia, Heavy pair production currents with general quantum numbers in dimensionally regularized NRQCD, Phys. Rev. D 74 (2006) 114016 [hep-ph/0609151] [INSPIRE].
  58. [58]
    A.H. Hoang, Three loop anomalous dimension of the heavy quark pair production current in nonrelativistic QCD, Phys. Rev. D 69 (2004) 034009 [hep-ph/0307376] [INSPIRE].
  59. [59]
    M. Beneke, P. Marquard, P. Nason and M. Steinhauser, On the ultimate uncertainty of the top quark pole mass, Phys. Lett. B 775 (2017) 63 [arXiv:1605.03609] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    A.H. Hoang, C. Lepenik and M. Preisser, On the Light Massive Flavor Dependence of the Large Order Asymptotic Behavior and the Ambiguity of the Pole Mass, JHEP 09 (2017) 099 [arXiv:1706.08526] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    A.H. Hoang, A. Jain, I. Scimemi and I.W. Stewart, Infrared Renormalization Group Flow for Heavy Quark Masses, Phys. Rev. Lett. 101 (2008) 151602 [arXiv:0803.4214] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    A.H. Hoang et al., The MSR Mass and the \( \mathcal{O}\left({\Lambda}_{\mathrm{QCD}}\right) \) Renormalon Sum Rule, arXiv:1704.01580 [INSPIRE].
  63. [63]
    W. Kilian, T. Ohl and J. Reuter, WHIZARD: Simulating Multi-Particle Processes at LHC and ILC, Eur. Phys. J. C 71 (2011) 1742 [arXiv:0708.4233] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    M. Moretti, T. Ohl and J. Reuter, O’Mega: An optimizing matrix element generator, hep-ph/0102195 [INSPIRE].
  65. [65]
    B. Chokoufé Nejad, T. Ohl and J. Reuter, Simple, parallel virtual machines for extreme computations, Comput. Phys. Commun. 196 (2015) 58 [arXiv:1411.3834] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    T. Ohl, Vegas revisited: Adaptive Monte Carlo integration beyond factorization, Comput. Phys. Commun. 120 (1999) 13 [hep-ph/9806432] [INSPIRE].
  67. [67]
    W. Kilian, T. Ohl, J. Reuter and C. Speckner, QCD in the Color-Flow Representation, JHEP 10 (2012) 022 [arXiv:1206.3700] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    W. Kilian, J. Reuter, S. Schmidt and D. Wiesler, An Analytic Initial-State Parton Shower, JHEP 04 (2012) 013 [arXiv:1112.1039] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    V.N. Gribov and L.N. Lipatov, Deep inelastic ep scattering in perturbation theory, Sov. J. Nucl. Phys. 15 (1972) 438 [INSPIRE].Google Scholar
  70. [70]
    V.N. Gribov and L.N. Lipatov, e + e pair annihilation and deep inelastic e p scattering in perturbation theory, Sov. J. Nucl. Phys. 15 (1972) 675 [INSPIRE].
  71. [71]
    E.A. Kuraev and V.S. Fadin, On Radiative Corrections to e + e Single Photon Annihilation at High-Energy, Sov. J. Nucl. Phys. 41 (1985) 466 [INSPIRE].Google Scholar
  72. [72]
    M. Skrzypek and S. Jadach, Exact and approximate solutions for the electron nonsinglet structure function in QED, Z. Phys. C 49 (1991) 577 [INSPIRE].Google Scholar
  73. [73]
    T. Ohl, CIRCE version 1.0: Beam spectra for simulating linear collider physics, Comput. Phys. Commun. 101 (1997) 269 [hep-ph/9607454] [INSPIRE].
  74. [74]
    F. Cascioli, P. Maierhöfer and S. Pozzorini, Scattering Amplitudes with Open Loops, Phys. Rev. Lett. 108 (2012) 111601 [arXiv:1111.5206] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    G. Cullen et al., Automated One-Loop Calculations with GoSam, Eur. Phys. J. C 72 (2012) 1889 [arXiv:1111.2034] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    G. Cullen et al., GoSam -2.0: a tool for automated one-loop calculations within the Standard Model and beyond, Eur. Phys. J. C 74 (2014) 3001 [arXiv:1404.7096] [INSPIRE].
  77. [77]
    S. Actis, A. Denner, L. Hofer, A. Scharf and S. Uccirati, Recursive generation of one-loop amplitudes in the Standard Model, JHEP 04 (2013) 037 [arXiv:1211.6316] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    S. Actis, A. Denner, L. Hofer, J.-N. Lang, A. Scharf and S. Uccirati, RECOLA: REcursive Computation of One-Loop Amplitudes, Comput. Phys. Commun. 214 (2017) 140 [arXiv:1605.01090] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  79. [79]
    S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys. B 467 (1996) 399 [hep-ph/9512328] [INSPIRE].
  80. [80]
    R. Frederix, S. Frixione, F. Maltoni and T. Stelzer, Automation of next-to-leading order computations in QCD: The FKS subtraction, JHEP 10 (2009) 003 [arXiv:0908.4272] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    T. Ježo and P. Nason, On the Treatment of Resonances in Next-to-Leading Order Calculations Matched to a Parton Shower, JHEP 12 (2015) 065 [arXiv:1509.09071] [INSPIRE].ADSGoogle Scholar
  82. [82]
    T. Binoth, N. Greiner, A. Guffanti, J. Reuter, J.P. Guillet and T. Reiter, Next-to-leading order QCD corrections to \( pp\to b\overline{b}b\overline{b}+X \) at the LHC: the quark induced case, Phys. Lett. B 685 (2010) 293 [arXiv:0910.4379] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    N. Greiner, A. Guffanti, T. Reiter and J. Reuter, NLO QCD corrections to the production of two bottom-antibottom pairs at the LHC, Phys. Rev. Lett. 107 (2011) 102002 [arXiv:1105.3624] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    W. Kilian, J. Reuter and T. Robens, NLO Event Generation for Chargino Production at the ILC, Eur. Phys. J. C 48 (2006) 389 [hep-ph/0607127] [INSPIRE].
  85. [85]
    N.D. Christensen, C. Duhr, B. Fuks, J. Reuter and C. Speckner, Introducing an interface between WHIZARD and FeynRules, Eur. Phys. J. C 72 (2012) 1990 [arXiv:1010.3251] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    R.G. Stuart, Gauge invariance, analyticity and physical observables at the Z0 resonance, Phys. Lett. B 262 (1991) 113 [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    P.A. Grassi, B.A. Kniehl and A. Sirlin, Width and partial widths of unstable particles, Phys. Rev. Lett. 86 (2001) 389 [hep-th/0005149] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    P. Gambino and P.A. Grassi, The Nielsen identities of the SM and the definition of mass, Phys. Rev. D 62 (2000) 076002 [hep-ph/9907254] [INSPIRE].
  89. [89]
    A. Denner, S. Dittmaier, M. Roth and L.H. Wieders, Electroweak corrections to charged-current e + e → 4 fermion processes: Technical details and further results, Nucl. Phys. B 724 (2005) 247 [Erratum ibid. B 854 (2012) 504] [hep-ph/0505042] [INSPIRE].
  90. [90]
    A. Denner and S. Dittmaier, The Complex-mass scheme for perturbative calculations with unstable particles, Nucl. Phys. Proc. Suppl. 160 (2006) 22 [hep-ph/0605312] [INSPIRE].
  91. [91]
    A. Denner and J.-N. Lang, The Complex-Mass Scheme and Unitarity in perturbative Quantum Field Theory, Eur. Phys. J. C 75 (2015) 377 [arXiv:1406.6280] [INSPIRE].ADSCrossRefGoogle Scholar
  92. [92]
    E. Boos and T. Ohl, Minimal gauge invariant classes of tree diagrams in gauge theories, Phys. Rev. Lett. 83 (1999) 480 [hep-ph/9903357] [INSPIRE].
  93. [93]
    A. Aeppli, F. Cuypers and G.J. van Oldenborgh, \( \mathcal{O}\left(\Lambda \right) \) corrections to W pair production in e + e and γγ collisions, Phys. Lett. B 314 (1993) 413 [hep-ph/9303236] [INSPIRE].
  94. [94]
    M.J.G. Veltman, Unitarity and causality in a renormalizable field theory with unstable particles, Physica 29 (1963) 186 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  95. [95]
    A. Aeppli, G.J. van Oldenborgh and D. Wyler, Unstable particles in one loop calculations, Nucl. Phys. B 428 (1994) 126 [hep-ph/9312212] [INSPIRE].
  96. [96]
    A. Denner, S. Dittmaier, M. Roth and D. Wackeroth, Electroweak radiative corrections to e + e WW → 4 fermions in double pole approximation: The RacoonWW approach, Nucl. Phys. B 587 (2000) 67 [hep-ph/0006307] [INSPIRE].
  97. [97]
    A. Denner, S. Dittmaier, M. Roth and D. Wackeroth, O(α) corrections to e+e− → WW → 4 f ermions (+γ): First numerical results from RacoonWW, Phys. Lett. B 475 (2000) 127 [hep-ph/9912261] [INSPIRE].
  98. [98]
    W. Beenakker, F.A. Berends and A.P. Chapovsky, Radiative corrections to pair production of unstable particles: results for e + e four fermions, Nucl. Phys. B 548 (1999) 3 [hep-ph/9811481] [INSPIRE].
  99. [99]
    S. Dittmaier and C. Schwan, Non-factorizable photonic corrections to resonant production and decay of many unstable particles, Eur. Phys. J. C 76 (2016) 144 [arXiv:1511.01698] [INSPIRE].ADSCrossRefGoogle Scholar
  100. [100]
    E. Byckling and K. Kajantie, Particle kinematics, John Wiley & Sons (1973).Google Scholar
  101. [101]
    Particle Data Group collaboration, K.A. Olive et al., Review of Particle Physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].
  102. [102]
    S. Bethke, G. Dissertori and G.P. Salam, World Summary of α s (2015), EPJ Web Conf. 120 (2016) 07005 [INSPIRE].CrossRefGoogle Scholar
  103. [103]
    A. Denner and T. Sack, The Top width, Nucl. Phys. B 358 (1991) 46 [INSPIRE].ADSCrossRefGoogle Scholar
  104. [104]
    J. Fleischer, A. Leike, T. Riemann and A. Werthenbach, Electroweak one loop corrections for e + e annihilation into t anti-top including hard bremsstrahlung, Eur. Phys. J. C 31 (2003) 37 [hep-ph/0302259] [INSPIRE].
  105. [105]
    W. Beenakker et al., WW cross-sections and distributions, in CERN Workshop on LEP2 Physics, (followed by 2nd meeting, 15–16 Jun 1995 and 3rd meeting 2–3 Nov 1995), Geneva, Switzerland, February 2–3, 1995, pp. 79–139 (1996) [hep-ph/9602351] [INSPIRE].
  106. [106]
    J. Jersak, E. Laermann and P.M. Zerwas, QCD Corrected Forward Backward Asymmetry of Quark Jets in e + e Annihilation, Phys. Lett. B 98 (1981) 363 [INSPIRE].ADSCrossRefGoogle Scholar
  107. [107]
    J. Jersak, E. Laermann and P.M. Zerwas, Electroweak Production of Heavy Quarks in e + e Annihilation, Phys. Rev. D 25 (1982) 1218 [Erratum ibid. D 36 (1987) 310] [INSPIRE].
  108. [108]
    S. Jadach and J.H. Kühn, Asymmetries in Heavy Fermion Production and Decay, Phys. Lett. B 191 (1987) 313 [INSPIRE].ADSCrossRefGoogle Scholar
  109. [109]
    S. Alioli et al., Update of the Binoth Les Houches Accord for a standard interface between Monte Carlo tools and one-loop programs, Comput. Phys. Commun. 185 (2014) 560 [arXiv:1308.3462] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  110. [110]
    B. Chokoufé Nejad, W. Kilian, J. Reuter and C. Weiss, Matching NLO QCD Corrections in WHIZARD with the POWHEG scheme, PoS(EPS-HEP2015)317 [arXiv:1510.02739] [INSPIRE].
  111. [111]
    C. Weiss, Top quark physics as a prime application of automated higher-order corrections, Ph.D. Thesis, DESY, Hamburg (2017) [DESY-THESIS-2017-025] [INSPIRE].
  112. [112]
    M.W. Grunewald et al., Reports of the Working Groups on Precision Calculations for LEP2 Physics: Proceedings. Four fermion production in electron positron collisions, hep-ph/0005309 [INSPIRE].
  113. [113]
    P. Ruiz-Femenia, First estimate of the NNLO nonresonant corrections to top-antitop threshold production at lepton colliders, Phys. Rev. D 89 (2014) 097501 [arXiv:1402.1123] [INSPIRE].ADSGoogle Scholar
  114. [114]
    A. Buckley et al., Rivet user manual, Comput. Phys. Commun. 184 (2013) 2803 [arXiv:1003.0694] [INSPIRE].ADSCrossRefGoogle Scholar
  115. [115]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  116. [116]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  117. [117]
    S. Fleming, A.H. Hoang, S. Mantry and I.W. Stewart, Top Jets in the Peak Region: Factorization Analysis with NLL Resummation, Phys. Rev. D 77 (2008) 114003 [arXiv:0711.2079] [INSPIRE].ADSGoogle Scholar
  118. [118]
    M. Butenschön, B. Dehnadi, A.H. Hoang, V. Mateu, M. Preisser and I.W. Stewart, Top Quark Mass Calibration for Monte Carlo Event Generators, Phys. Rev. Lett. 117 (2016) 232001 [arXiv:1608.01318] [INSPIRE].ADSCrossRefGoogle Scholar
  119. [119]
    A.H. Hoang, S. Mantry, A. Pathak and I.W. Stewart, Extracting a Short Distance Top Mass with Light Grooming, arXiv:1708.02586 [INSPIRE].
  120. [120]
    K. Agashe, R. Franceschini and D. Kim, Simple “invariance” of two-body decay kinematics, Phys. Rev. D 88 (2013) 057701 [arXiv:1209.0772] [INSPIRE].ADSGoogle Scholar
  121. [121]
    K. Agashe, R. Franceschini, S. Hong and D. Kim, Energy spectra of massive two-body decay products and mass measurement, JHEP 04 (2016) 151 [arXiv:1512.02265] [INSPIRE].ADSGoogle Scholar
  122. [122]
    K. Agashe, R. Franceschini, D. Kim and M. Schulze, Top quark mass determination from the energy peaks of b-jets and B-hadrons at NLO QCD, Eur. Phys. J. C 76 (2016) 636 [arXiv:1603.03445] [INSPIRE].ADSCrossRefGoogle Scholar
  123. [123]
    CMS collaboration, Measurement of the top-quark mass from the b jet energy spectrum, CMS-PAS-TOP-15-002.

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.European Commission, EurostatLuxembourgLuxembourg
  2. 2.DESY, Theory GroupHamburgGermany
  3. 3.University of Vienna, Faculty of PhysicsWienAustria
  4. 4.Erwin Schrödinger International Institute for Mathematical PhysicsUniversity of ViennaViennaAustria
  5. 5.University of Siegen, Department of PhysicsSiegenGermany
  6. 6.PRISMA Cluster of Excellence, Institute of PhysicsJohannes Gutenberg UniversityMainzGermany
  7. 7.University of Liverpool, Department of Mathematical SciencesLiverpoolUnited Kingdom

Personalised recommendations