Time-dependent observables in heavy ion collisions. Part II. In search of pressure isotropization in the φ4 theory

Open Access
Regular Article - Theoretical Physics
  • 21 Downloads

Abstract

To understand the dynamics of thermalization in heavy ion collisions in the perturbative framework it is essential to first find corrections to the free-streaming classical gluon fields of the McLerran-Venugopalan model. The corrections that lead to deviations from free streaming (and that dominate at late proper time) would provide evidence for the onset of isotropization (and, possibly, thermalization) of the produced medium. To find such corrections we calculate the late-time two-point Green function and the energy-momentum tensor due to a single 2 → 2 scattering process involving two classical fields. To make the calculation tractable we employ the scalar φ4 theory instead of QCD. We compare our exact diagrammatic results for these quantities to those in kinetic theory and find disagreement between the two. The disagreement is in the dependence on the proper time τ and, for the case of the two-point function, is also in the dependence on the space-time rapidity η: the exact diagrammatic calculation is, in fact, consistent with the free streaming scenario. Kinetic theory predicts a build-up of longitudinal pressure, which, however, is not observed in the exact calculation. We conclude that we find no evidence for the beginning of the transition from the free-streaming classical fields to the kinetic theory description of the produced matter after a single 2 → 2 rescattering.

Keywords

Perturbative QCD Quark-Gluon Plasma 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [INSPIRE].
  2. [2]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    S.S. Gubser, S.S. Pufu and A. Yarom, Entropy production in collisions of gravitational shock waves and of heavy ions, Phys. Rev. D 78 (2008) 066014 [arXiv:0805.1551] [INSPIRE].ADSGoogle Scholar
  4. [4]
    S. Lin and E. Shuryak, Grazing collisions of gravitational shock waves and entropy production in heavy ion collision, Phys. Rev. D 79 (2009) 124015 [arXiv:0902.1508] [INSPIRE].ADSGoogle Scholar
  5. [5]
    Y.V. Kovchegov and S. Lin, Toward thermalization in heavy ion collisions at strong coupling, JHEP 03 (2010) 057 [arXiv:0911.4707] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  6. [6]
    P.M. Chesler and L.G. Yaffe, Boost invariant flow, black hole formation and far-from-equilibrium dynamics in N = 4 supersymmetric Yang-Mills theory, Phys. Rev. D 82 (2010) 026006 [arXiv:0906.4426] [INSPIRE].ADSGoogle Scholar
  7. [7]
    P.M. Chesler and L.G. Yaffe, Holography and colliding gravitational shock waves in asymptotically AdS 5 spacetime, Phys. Rev. Lett. 106 (2011) 021601 [arXiv:1011.3562] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    R. Baier, A.H. Mueller, D. Schiff and D.T. Son, ‘Bottom up’ thermalization in heavy ion collisions, Phys. Lett. B 502 (2001) 51 [hep-ph/0009237] [INSPIRE].
  9. [9]
    L.D. McLerran and R. Venugopalan, Computing quark and gluon distribution functions for very large nuclei, Phys. Rev. D 49 (1994) 2233 [hep-ph/9309289] [INSPIRE].
  10. [10]
    L.D. McLerran and R. Venugopalan, Gluon distribution functions for very large nuclei at small transverse momentum, Phys. Rev. D 49 (1994) 3352 [hep-ph/9311205] [INSPIRE].
  11. [11]
    L.D. McLerran and R. Venugopalan, Green’s functions in the color field of a large nucleus, Phys. Rev. D 50 (1994) 2225 [hep-ph/9402335] [INSPIRE].
  12. [12]
    A. Krasnitz and R. Venugopalan, Nonperturbative computation of gluon minijet production in nuclear collisions at very high-energies, Nucl. Phys. B 557 (1999) 237 [hep-ph/9809433] [INSPIRE].
  13. [13]
    A. Krasnitz and R. Venugopalan, The initial energy density of gluons produced in very high-energy nuclear collisions, Phys. Rev. Lett. 84 (2000) 4309 [hep-ph/9909203] [INSPIRE].
  14. [14]
    A. Krasnitz, Y. Nara and R. Venugopalan, Probing a color glass condensate in high energy heavy ion collisions, Braz. J. Phys. 33 (2003) 223.ADSCrossRefGoogle Scholar
  15. [15]
    T. Lappi, Production of gluons in the classical field model for heavy ion collisions, Phys. Rev. C 67 (2003) 054903 [hep-ph/0303076] [INSPIRE].
  16. [16]
    P.B. Arnold, J. Lenaghan and G.D. Moore, QCD plasma instabilities and bottom up thermalization, JHEP 08 (2003) 002 [hep-ph/0307325] [INSPIRE].
  17. [17]
    P.B. Arnold and J. Lenaghan, The abelianization of QCD plasma instabilities, Phys. Rev. D 70 (2004) 114007 [hep-ph/0408052] [INSPIRE].
  18. [18]
    P.B. Arnold, J. Lenaghan, G.D. Moore and L.G. Yaffe, Apparent thermalization due to plasma instabilities in quark-gluon plasma, Phys. Rev. Lett. 94 (2005) 072302 [nucl-th/0409068] [INSPIRE].
  19. [19]
    A. Rebhan, P. Romatschke and M. Strickland, Hard-loop dynamics of non-Abelian plasma instabilities, Phys. Rev. Lett. 94 (2005) 102303 [hep-ph/0412016] [INSPIRE].
  20. [20]
    P. Romatschke and R. Venugopalan, The unstable glasma, Phys. Rev. D 74 (2006) 045011 [hep-ph/0605045] [INSPIRE].
  21. [21]
    J. Berges, K. Boguslavski, S. Schlichting and R. Venugopalan, Universal attractor in a highly occupied non-Abelian plasma, Phys. Rev. D 89 (2014) 114007 [arXiv:1311.3005] [INSPIRE].ADSGoogle Scholar
  22. [22]
    T. Epelbaum and F. Gelis, Pressure isotropization in high energy heavy ion collisions, Phys. Rev. Lett. 111 (2013) 232301 [arXiv:1307.2214] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    T. Epelbaum, F. Gelis and B. Wu, Nonrenormalizability of the classical statistical approximation, Phys. Rev. D 90 (2014) 065029 [arXiv:1402.0115] [INSPIRE].ADSGoogle Scholar
  24. [24]
    T. Epelbaum, F. Gelis, N. Tanji and B. Wu, Properties of the Boltzmann equation in the classical approximation, Phys. Rev. D 90 (2014) 125032 [arXiv:1409.0701] [INSPIRE].ADSGoogle Scholar
  25. [25]
    A.H. Mueller and D.T. Son, On the equivalence between the Boltzmann equation and classical field theory at large occupation numbers, Phys. Lett. B 582 (2004) 279 [hep-ph/0212198] [INSPIRE].
  26. [26]
    P.B. Arnold, G.D. Moore and L.G. Yaffe, Effective kinetic theory for high temperature gauge theories, JHEP 01 (2003) 030 [hep-ph/0209353] [INSPIRE].
  27. [27]
    A. Kurkela and Y. Zhu, Isotropization and hydrodynamization in weakly coupled heavy-ion collisions, Phys. Rev. Lett. 115 (2015) 182301 [arXiv:1506.06647] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    L.V. Gribov, E.M. Levin and M.G. Ryskin, Semihard processes in QCD, Phys. Rept. 100 (1983) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    E. Iancu and R. Venugopalan, The color glass condensate and high energy scattering in QCD, hep-ph/0303204.
  30. [30]
    H. Weigert, Evolution at small x bj : the color glass condensate, Prog. Part. Nucl. Phys. 55 (2005) 461 [hep-ph/0501087] [INSPIRE].
  31. [31]
    J. Jalilian-Marian and Y.V. Kovchegov, Saturation physics and deuteron-Gold collisions at RHIC, Prog. Part. Nucl. Phys. 56 (2006) 104 [hep-ph/0505052] [INSPIRE].
  32. [32]
    F. Gelis, E. Iancu, J. Jalilian-Marian and R. Venugopalan, The color glass condensate, Ann. Rev. Nucl. Part. Sci. 60 (2010) 463 [arXiv:1002.0333].ADSCrossRefGoogle Scholar
  33. [33]
    J.L. Albacete and C. Marquet, Gluon saturation and initial conditions for relativistic heavy ion collisions, Prog. Part. Nucl. Phys. 76 (2014) 1 [arXiv:1401.4866] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    Y.V. Kovchegov and E. Levin, Quantum chromodynamics at high energy, Cambridge University Press, Cambridge U.K. (2012).CrossRefMATHGoogle Scholar
  35. [35]
    A.H. Mueller, Small x behavior and parton saturation: a QCD model, Nucl. Phys. B 335 (1990) 115 [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    I. Balitsky, Operator expansion for high-energy scattering, Nucl. Phys. B 463 (1996) 99 [hep-ph/9509348] [INSPIRE].
  37. [37]
    I. Balitsky, Factorization and high-energy effective action, Phys. Rev. D 60 (1999) 014020 [hep-ph/9812311] [INSPIRE].
  38. [38]
    Y.V. Kovchegov, Small x F 2 structure function of a nucleus including multiple Pomeron exchanges, Phys. Rev. D 60 (1999) 034008 [hep-ph/9901281] [INSPIRE].
  39. [39]
    Y.V. Kovchegov, Unitarization of the BFKL Pomeron on a nucleus, Phys. Rev. D 61 (2000) 074018 [hep-ph/9905214] [INSPIRE].
  40. [40]
    J. Jalilian-Marian, A. Kovner and H. Weigert, The Wilson renormalization group for low x physics: gluon evolution at finite parton density, Phys. Rev. D 59 (1998) 014015 [hep-ph/9709432] [INSPIRE].
  41. [41]
    J. Jalilian-Marian, A. Kovner, A. Leonidov and H. Weigert, The Wilson renormalization group for low x physics: Towards the high density regime, Phys. Rev. D 59 (1998) 014014 [hep-ph/9706377] [INSPIRE].
  42. [42]
    E. Iancu, A. Leonidov and L.D. McLerran, The renormalization group equation for the color glass condensate, Phys. Lett. B 510 (2001) 133 [hep-ph/0102009] [INSPIRE].
  43. [43]
    E. Iancu, A. Leonidov and L.D. McLerran, Nonlinear gluon evolution in the color glass condensate. 1, Nucl. Phys. A 692 (2001) 583 [hep-ph/0011241] [INSPIRE].
  44. [44]
    I. Balitsky, Scattering of shock waves in QCD, Phys. Rev. D 70 (2004) 114030 [hep-ph/0409314] [INSPIRE].
  45. [45]
    G.A. Chirilli, Y.V. Kovchegov and D.E. Wertepny, Classical gluon production amplitude for nucleus-nucleus collisions: first saturation correction in the projectile, JHEP 03 (2015) 015 [arXiv:1501.03106] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    A. Kovner, L.D. McLerran and H. Weigert, Gluon production at high transverse momentum in the McLerran-Venugopalan model of nuclear structure functions, Phys. Rev. D 52 (1995) 3809 [hep-ph/9505320] [INSPIRE].
  47. [47]
    A. Kovner, L.D. McLerran and H. Weigert, Gluon production from nonAbelian Weizsacker-Williams fields in nucleus-nucleus collisions, Phys. Rev. D 52 (1995) 6231 [hep-ph/9502289] [INSPIRE].
  48. [48]
    Y.V. Kovchegov and D.H. Rischke, Classical gluon radiation in ultrarelativistic nucleus-nucleus collisions, Phys. Rev. C 56 (1997) 1084 [hep-ph/9704201] [INSPIRE].
  49. [49]
    Y.V. Kovchegov and A.H. Mueller, Gluon production in current nucleus and nucleon - nucleus collisions in a quasiclassical approximation, Nucl. Phys. B 529 (1998) 451 [hep-ph/9802440] [INSPIRE].
  50. [50]
    A. Dumitru and L.D. McLerran, How protons shatter colored glass, Nucl. Phys. A 700 (2002) 492 [hep-ph/0105268] [INSPIRE].
  51. [51]
    F. Gelis, T. Lappi and R. Venugopalan, High energy factorization in nucleus-nucleus collisions, Phys. Rev. D 78 (2008) 054019 [arXiv:0804.2630] [INSPIRE].ADSGoogle Scholar
  52. [52]
    F. Gelis, T. Lappi and R. Venugopalan, High energy factorization in nucleus-nucleus collisions. II. Multigluon correlations, Phys. Rev. D 78 (2008) 054020 [arXiv:0807.1306] [INSPIRE].
  53. [53]
    Y.V. Kovchegov, Can thermalization in heavy ion collisions be described by QCD diagrams?, Nucl. Phys. A 762 (2005) 298 [hep-ph/0503038] [INSPIRE].
  54. [54]
    Y.V. Kovchegov, Thoughts on non-perturbative thermalization and jet quenching in heavy ion collisions, Nucl. Phys. A 764 (2006) 476 [hep-ph/0507134] [INSPIRE].
  55. [55]
    B. Wu and Y.V. Kovchegov, Time-dependent observables in heavy ion collisions. Part I. Setting up the formalism, in preparation.Google Scholar
  56. [56]
    F. Gelis and R. Venugopalan, Particle production in field theories coupled to strong external sources, Nucl. Phys. A 776 (2006) 135 [hep-ph/0601209] [INSPIRE].
  57. [57]
    T. Lappi, Energy density of the glasma, Phys. Lett. B 643 (2006) 11 [hep-ph/0606207] [INSPIRE].
  58. [58]
    T. Epelbaum, F. Gelis, S. Jeon, G. Moore and B. Wu, Kinetic theory of a longitudinally expanding system of scalar particles, JHEP 09 (2015) 117 [arXiv:1506.05580] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  59. [59]
    G.P. Lepage and S.J. Brodsky, Exclusive processes in perturbative quantum chromodynamics, Phys. Rev. D 22 (1980) 2157 [INSPIRE].ADSGoogle Scholar
  60. [60]
    R.E. Cutkosky, Singularities and discontinuities of Feynman amplitudes, J. Math. Phys. 1 (1960) 429 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of PhysicsThe Ohio State UniversityColumbusU.S.A.

Personalised recommendations