FRW and domain walls in higher spin gravity

  • R. Aros
  • C. Iazeolla
  • J. Noreña
  • E. Sezgin
  • P. Sundell
  • Y. Yin
Open Access
Regular Article - Theoretical Physics
  • 20 Downloads

Abstract

We present exact solutions to Vasiliev’s bosonic higher spin gravity equations in four dimensions with positive and negative cosmological constant that admit an interpretation in terms of domain walls, quasi-instantons and Friedman-Robertson-Walker (FRW) backgrounds. Their isometry algebras are infinite dimensional higher-spin extensions of spacetime isometries generated by six Killing vectors. The solutions presented are obtained by using a method of holomorphic factorization in noncommutative twistor space and gauge functions. In interpreting the solutions in terms of Fronsdal-type fields in space-time, a field-dependent higher spin transformation is required, which is implemented at leading order. To this order, the scalar field solves Klein-Gordon equation with conformal mass in (A)dS4. We interpret the FRW solution with de Sitter asymptotics in the context of inflationary cosmology and we expect that the domain wall and FRW solutions are associated with spontaneously broken scaling symmetries in their holographic description. We observe that the factorization method provides a convenient framework for setting up a perturbation theory around the exact solutions, and we propose that the nonlinear completion of particle excitations over FRW and domain wall solutions requires black hole-like states.

Keywords

Cosmology of Theories beyond the SM Higher Spin Gravity Higher Spin Symmetry 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M.A. Vasiliev, Consistent equations for interacting gauge fields of all spins in 3 + 1 dimensions, Phys. Lett. B 243 (1990) 378.ADSMathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    E. Sezgin and P. Sundell, Massless higher spins and holography, Nucl. Phys. B 644 (2002) 303 [Erratum ibid. B 660 (2003) 403] [hep-th/0205131] [INSPIRE].
  3. [3]
    I.R. Klebanov and A.M. Polyakov, AdS dual of the critical O(N) vector model, Phys. Lett. B 550 (2002) 213 [hep-th/0210114] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    E. Sezgin and P. Sundell, Holography in 4D (super) higher spin theories and a test via cubic scalar couplings, JHEP 07 (2005) 044 [hep-th/0305040] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    D. Anninos, T. Hartman and A. Strominger, Higher Spin Realization of the dS/CFT Correspondence, Class. Quant. Grav. 34 (2017) 015009 [arXiv:1108.5735] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    D. Anninos, F. Denef and D. Harlow, Wave function of Vasilievs universe: A few slices thereof, Phys. Rev. D 88 (2013) 084049 [arXiv:1207.5517] [INSPIRE].ADSGoogle Scholar
  7. [7]
    S. Banerjee et al., Topology of Future Infinity in dS/CFT, JHEP 11 (2013) 026 [arXiv:1306.6629] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    D. Anninos, F. Denef, G. Konstantinidis and E. Shaghoulian, Higher Spin de Sitter Holography from Functional Determinants, JHEP 02 (2014) 007 [arXiv:1305.6321] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    D. Anninos, R. Mahajan, D. Radičević and E. Shaghoulian, Chern-Simons-Ghost Theories and de Sitter Space, JHEP 01 (2015) 074 [arXiv:1405.1424] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    T. Hertog, G. Tartaglino-Mazzucchelli, T. Van Riet and G. Venken, Supersymmetric dS/CFT, JHEP 02 (2018) 024 [arXiv:1709.06024] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    Y. Neiman, Towards causal patch physics in dS/CFT, EPJ Web Conf. 168 (2018) 01007 [arXiv:1710.05682] [INSPIRE].CrossRefGoogle Scholar
  12. [12]
    D. Anninos, F. Denef, R. Monten and Z. Sun, Higher Spin de Sitter Hilbert Space, arXiv:1711.10037 [INSPIRE].
  13. [13]
    L. Girardello, M. Porrati and A. Zaffaroni, 3 − D interacting CFTs and generalized Higgs phenomenon in higher spin theories on AdS, Phys. Lett. B 561 (2003) 289 [hep-th/0212181] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    E. Sezgin and P. Sundell, An Exact solution of 4 − D higher-spin gauge theory, Nucl. Phys. B 762 (2007) 1 [hep-th/0508158] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    E. Sezgin and P. Sundell, On an exact cosmological solution of higher spin gauge theory, in 4th International Symposium on Quantum Theory and Symmetries and 6th International Workshop on Lie Theory and Its Applications in Physics (QTS-4) (LT-6), Varna, Bulgaria, 15 - 21 August 2005 [hep-th/0511296] [INSPIRE].
  16. [16]
    W.A. Bardeen and M. Moshe, Spontaneous breaking of scale invariance in a D = 3 U(N ) model with Chern-Simons gauge fields, JHEP 06 (2014) 113 [arXiv:1402.4196] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    C. Iazeolla and P. Sundell, Families of exact solutions to Vasilievs 4D equations with spherical, cylindrical and biaxial symmetry, JHEP 12 (2011) 084 [arXiv:1107.1217] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    C. Iazeolla and P. Sundell, 4D Higher Spin Black Holes with Nonlinear Scalar Fluctuations, JHEP 10 (2017) 130 [arXiv:1705.06713] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    C. Iazeolla, E. Sezgin and P. Sundell, On Exact Solutions and Perturbative Schemes in Higher Spin Theory, Universe 4 (2018) 5 [arXiv:1711.03550] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    C. Iazeolla, E. Sezgin and P. Sundell, Real forms of complex higher spin field equations and new exact solutions, Nucl. Phys. B 791 (2008) 231 [arXiv:0706.2983] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    B. Sundborg, Stringy gravity, interacting tensionless strings and massless higher spins, Nucl. Phys. Proc. Suppl. 102 (2001) 113 [hep-th/0103247] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    J. Engquist and P. Sundell, Brane partons and singleton strings, Nucl. Phys. B 752 (2006) 206 [hep-th/0508124] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    C.-M. Chang, S. Minwalla, T. Sharma and X. Yin, ABJ Triality: from Higher Spin Fields to Strings, J. Phys. A 46 (2013) 214009 [arXiv:1207.4485] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  24. [24]
    M.R. Gaberdiel and R. Gopakumar, Higher Spins & Strings, JHEP 11 (2014) 044 [arXiv:1406.6103] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    M.R. Gaberdiel and R. Gopakumar, String Theory as a Higher Spin Theory, JHEP 09 (2016) 085 [arXiv:1512.07237] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    E. Sezgin and P. Sundell, Supersymmetric Higher Spin Theories, J. Phys. A 46 (2013) 214022 [arXiv:1208.6019] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  27. [27]
    D. Kutasov, T. Maxfield, I. Melnikov and S. Sethi, Constraining de Sitter Space in String Theory, Phys. Rev. Lett. 115 (2015) 071305 [arXiv:1504.00056] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    N. Arkani-Hamed and J. Maldacena, Cosmological Collider Physics, arXiv:1503.08043 [INSPIRE].
  29. [29]
    H. Lee, D. Baumann and G.L. Pimentel, Non-Gaussianity as a Particle Detector, JHEP 12 (2016) 040 [arXiv:1607.03735] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    A. Kehagias and A. Riotto, On the Inflationary Perturbations of Massive Higher-Spin Fields, JCAP 07 (2017) 046 [arXiv:1705.05834] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    T. Hertog and G.T. Horowitz, Towards a big crunch dual, JHEP 07 (2004) 073 [hep-th/0406134] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    C. Iazeolla and J. Raeymaekers, On big crunch solutions in Prokushkin-Vasiliev theory, JHEP 01 (2016) 177 [arXiv:1510.08835] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    C. Iazeolla and P. Sundell, A Fiber Approach to Harmonic Analysis of Unfolded Higher-Spin Field Equations, JHEP 10 (2008) 022 [arXiv:0806.1942] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    M.A. Vasiliev, Properties of equations of motion of interacting gauge fields of all spins in (3 + 1)-dimensions, Class. Quant. Grav. 8 (1991) 1387 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    M.A. Vasiliev, Higher spin gauge theories: Star product and AdS space, hep-th/9910096 [INSPIRE].
  36. [36]
    E. Sezgin and P. Sundell, Analysis of higher spin field equations in four-dimensions, JHEP 07 (2002) 055 [hep-th/0205132] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    E. Sezgin and P. Sundell, Geometry and Observables in Vasilievs Higher Spin Gravity, JHEP 07 (2012) 121 [arXiv:1103.2360] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    N. Colombo and P. Sundell, Higher Spin Gravity Amplitudes From Zero-form Charges, arXiv:1208.3880 [INSPIRE].
  39. [39]
    V.E. Didenko and E.D. Skvortsov, Elements of Vasiliev theory, arXiv:1401.2975 [INSPIRE].
  40. [40]
    M.A. Vasiliev, More on equations of motion for interacting massless fields of all spins in (3 + 1)-dimensions, Phys. Lett. B 285 (1992) 225 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XX. Constraints on inflation, Astron. Astrophys. 594 (2016) A20 [arXiv:1502.02114] [INSPIRE].
  42. [42]
    C. Sleight and M. Taronna, Higher spin gauge theories and bulk locality: a no-go result, arXiv:1704.07859 [INSPIRE].
  43. [43]
    N. Boulanger and P. Sundell, An action principle for Vasilievs four-dimensional higher-spin gravity, J. Phys. A 44 (2011) 495402 [arXiv:1102.2219] [INSPIRE].MathSciNetMATHGoogle Scholar
  44. [44]
    N. Boulanger, E. Sezgin and P. Sundell, 4D Higher Spin Gravity with Dynamical Two-Form as a Frobenius-Chern-Simons Gauge Theory, arXiv:1505.04957 [INSPIRE].
  45. [45]
    N. Colombo and P. Sundell, Twistor space observables and quasi-amplitudes in 4D higher spin gravity, JHEP 11 (2011) 042 [arXiv:1012.0813] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  46. [46]
    R. Bonezzi, N. Boulanger, D. De Filippi and P. Sundell, Noncommutative Wilson lines in higher-spin theory and correlation functions of conserved currents for free conformal fields, J. Phys. A 50 (2017) 475401 [arXiv:1705.03928] [INSPIRE].ADSMathSciNetGoogle Scholar
  47. [47]
    C. Iazeolla, Boundary conditions and conserved charges of 4D higher-spin black holes, to appear.Google Scholar
  48. [48]
    V.E. Didenko and M.A. Vasiliev, Static BPS black hole in 4d higher-spin gauge theory, Phys. Lett. B 682 (2009) 305 [Erratum ibid. B 722 (2013) 389] [arXiv:0906.3898] [INSPIRE].
  49. [49]
    D. Baumann, Inflation, inPhysics of the large and the small, TASI 09, proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics, Boulder, U.S.A., 1 - 26 June 2009, pg. 523 [arXiv:0907.5424] [INSPIRE].
  50. [50]
    M.A. Vasiliev, On the Local Frame in Nonlinear Higher-Spin Equations, JHEP 01 (2018) 062 [arXiv:1707.03735] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • R. Aros
    • 1
  • C. Iazeolla
    • 2
  • J. Noreña
    • 3
  • E. Sezgin
    • 4
  • P. Sundell
    • 1
  • Y. Yin
    • 1
  1. 1.Departamento de Ciencias FísicasUniversidad Andres BelloSantiago de ChileChile
  2. 2.NSR Physics DepartmentG. Marconi UniversityRomeItaly
  3. 3.Instituto de FísicaPontificia Universidad Católica de ValparaísoValparaísoChile
  4. 4.Mitchell Institute for Fundamental Physics and AstronomyTexas A&M UniversityCollege StationU.S.A.

Personalised recommendations