BMS group at spatial infinity: the Hamiltonian (ADM) approach

Open Access
Regular Article - Theoretical Physics
  • 17 Downloads

Abstract

New boundary conditions for asymptotically flat spacetimes are given at spatial infinity. These boundary conditions are invariant under the BMS group, which acts non trivially. The boundary conditions fulfill all standard consistency requirements: (i) they make the symplectic form finite; (ii) they contain the Schwarzchild solution, the Kerr solution and their Poincaré transforms, (iii) they make the Hamiltonian generators of the asymptotic symmetries integrable and well-defined (finite). The boundary conditions differ from the ones given earlier in the literature in the choice of the parity conditions. It is this different choice of parity conditions that makes the action of the BMS group non trivial. Our approach is purely Hamiltonian and off-shell throughout.

Keywords

Classical Theories of Gravity Global Symmetries Space-Time Symmetries 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    P.A.M. Dirac, Forms of Relativistic Dynamics, Rev. Mod. Phys. 21 (1949) 392 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    V.A. Fock, The Theory of Space, Time and Gravitation, 1st edition, GITTL, Moscow (1955); 2nd revised edition, Pergamon Press, Oxford (1964).Google Scholar
  3. [3]
    P.A.M. Dirac, The theory of gravitation in Hamiltonian form, Proc. Roy. Soc. Lond. A 246 (1958) 333 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    P.A.M. Dirac, Fixation of coordinates in the Hamiltonian theory of gravitation, Phys. Rev. 114 (1959) 924 [INSPIRE].
  5. [5]
    R.L. Arnowitt, S. Deser and C.W. Misner, The dynamics of general relativity, in Gravitation: an introduction to current research, L. Witten, ed., Wiley, New York (1962), chapter 7, pp. 227–264 [Gen. Rel. Grav. 40 (2008) 1997] [gr-qc/0405109] [INSPIRE].
  6. [6]
    T. Regge and C. Teitelboim, Role of Surface Integrals in the Hamiltonian Formulation of General Relativity, Annals Phys. 88 (1974) 286 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  7. [7]
    H. Bondi, M.G.J. van der Burg and A.W.K. Metzner, Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems, Proc. Roy. Soc. Lond. A 269 (1962) 21 [INSPIRE].
  8. [8]
    R.K. Sachs, Gravitational waves in general relativity. 8. Waves in asymptotically flat space-times, Proc. Roy. Soc. Lond. A 270 (1962) 103 [INSPIRE].
  9. [9]
    R. Sachs, Asymptotic symmetries in gravitational theory, Phys. Rev. 128 (1962) 2851 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    E.T. Newman and T.W.J. Unti, Behavior of Asymptotically Flat Empty Spaces, J. Math. Phys. 3 (1962) 891 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    R. Penrose, Asymptotic properties of fields and space-times, Phys. Rev. Lett. 10 (1963) 66 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    R. Penrose, Zero rest mass fields including gravitation: Asymptotic behavior, Proc. Roy. Soc. Lond. A 284 (1965) 159 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  13. [13]
    T. Mädler and J. Winicour, Bondi-Sachs Formalism, Scholarpedia 11 (2016) 33528 [arXiv:1609.01731] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    F. Alessio and G. Esposito, On the structure and applications of the Bondi-Metzner-Sachs group, Int. J. Geom. Meth. Mod. Phys. 15 (2017) 1830002 [arXiv:1709.05134] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    T. Banks, A critique of pure string theory: Heterodox opinions of diverse dimensions, hep-th/0306074 [INSPIRE].
  16. [16]
    G. Barnich and C. Troessaert, Symmetries of asymptotically flat 4 dimensional spacetimes at null infinity revisited, Phys. Rev. Lett. 105 (2010) 111103 [arXiv:0909.2617] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    G. Barnich and C. Troessaert, Aspects of the BMS/CFT correspondence, JHEP 05 (2010) 062 [arXiv:1001.1541] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    G. Barnich and C. Troessaert, Supertranslations call for superrotations, PoS(CNCFG2010)010 [arXiv:1102.4632] [INSPIRE].
  19. [19]
    G. Barnich and C. Troessaert, BMS charge algebra, JHEP 12 (2011) 105 [arXiv:1106.0213] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    G. Barnich and C. Troessaert, Comments on holographic current algebras and asymptotically flat four dimensional spacetimes at null infinity, JHEP 11 (2013) 003 [arXiv:1309.0794] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    É. É. Flanagan and D.A. Nichols, Conserved charges of the extended Bondi-Metzner-Sachs algebra, Phys. Rev. D 95 (2017) 044002 [arXiv:1510.03386] [INSPIRE].ADSGoogle Scholar
  22. [22]
    G. Barnich and C. Troessaert, Finite BMS transformations, JHEP 03 (2016) 167 [arXiv:1601.04090] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    A. Strominger and A. Zhiboedov, Superrotations and Black Hole Pair Creation, Class. Quant. Grav. 34 (2017) 064002 [arXiv:1610.00639] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    G. Barnich, Centrally extended BMS4 Lie algebroid, JHEP 06 (2017) 007 [arXiv:1703.08704] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    M. Campiglia and A. Laddha, Asymptotic symmetries and subleading soft graviton theorem, Phys. Rev. D 90 (2014) 124028 [arXiv:1408.2228] [INSPIRE].ADSGoogle Scholar
  26. [26]
    M. Campiglia and A. Laddha, New symmetries for the Gravitational S-matrix, JHEP 04 (2015) 076 [arXiv:1502.02318] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    M. Campiglia and A. Laddha, Sub-subleading soft gravitons: New symmetries of quantum gravity?, Phys. Lett. B 764 (2017) 218 [arXiv:1605.09094] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  28. [28]
    M. Campiglia and A. Laddha, Sub-subleading soft gravitons and large diffeomorphisms, JHEP 01 (2017) 036 [arXiv:1608.00685] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    A. Ashtekar, Asymptotic Quantization of the Gravitational Field, Phys. Rev. Lett. 46 (1981) 573 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    A. Ashtekar, Asymptotic Quantization: Based On 1984 Naples Lectures, Naples, Italy, Bibliopolis (1987), Monographs and Textbooks in Physical Science 2 [INSPIRE].
  31. [31]
    A. Strominger, On BMS Invariance of Gravitational Scattering, JHEP 07 (2014) 152 [arXiv:1312.2229] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    T. He, V. Lysov, P. Mitra and A. Strominger, BMS supertranslations and Weinberg’s soft graviton theorem, JHEP 05 (2015) 151 [arXiv:1401.7026] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    F. Cachazo and A. Strominger, Evidence for a New Soft Graviton Theorem, arXiv:1404.4091 [INSPIRE].
  34. [34]
    A. Strominger and A. Zhiboedov, Gravitational Memory, BMS Supertranslations and Soft Theorems, JHEP 01 (2016) 086 [arXiv:1411.5745] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    S. Pasterski, A. Strominger and A. Zhiboedov, New Gravitational Memories, JHEP 12 (2016) 053 [arXiv:1502.06120] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    M. Campiglia and A. Laddha, Asymptotic symmetries of gravity and soft theorems for massive particles, JHEP 12 (2015) 094 [arXiv:1509.01406] [INSPIRE].ADSMathSciNetGoogle Scholar
  37. [37]
    G. Compère and J. Long, Vacua of the gravitational field, JHEP 07 (2016) 137 [arXiv:1601.04958] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    E. Conde and P. Mao, BMS Supertranslations and Not So Soft Gravitons, JHEP 05 (2017) 060 [arXiv:1612.08294] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  39. [39]
    S.W. Hawking, M.J. Perry and A. Strominger, Soft Hair on Black Holes, Phys. Rev. Lett. 116 (2016) 231301 [arXiv:1601.00921] [INSPIRE].
  40. [40]
    G. Compère and J. Long, Classical static final state of collapse with supertranslation memory, Class. Quant. Grav. 33 (2016) 195001 [arXiv:1602.05197] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  41. [41]
    G. Compère, Bulk supertranslation memories: a concept reshaping the vacua and black holes of general relativity, Int. J. Mod. Phys. D 25 (2016) 1644006 [arXiv:1606.00377] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  42. [42]
    S.W. Hawking, M.J. Perry and A. Strominger, Superrotation Charge and Supertranslation Hair on Black Holes, JHEP 05 (2017) 161 [arXiv:1611.09175] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  43. [43]
    R. Bousso and M. Porrati, Soft Hair as a Soft Wig, Class. Quant. Grav. 34 (2017) 204001 [arXiv:1706.00436] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  44. [44]
    A. Strominger, Black Hole Information Revisited, arXiv:1706.07143 [INSPIRE].
  45. [45]
    R. Bousso and M. Porrati, Observable Supertranslations, Phys. Rev. D 96 (2017) 086016 [arXiv:1706.09280] [INSPIRE].ADSGoogle Scholar
  46. [46]
    A. Strominger, Lectures on the Infrared Structure of Gravity and Gauge Theory, arXiv:1703.05448 [INSPIRE].
  47. [47]
    R. Beig and N. oMurchadha, The Poincaré group as the symmetry group of canonical general relativity, Annals Phys. 174 (1987) 463 [INSPIRE].
  48. [48]
    G. Compère and F. Dehouck, Relaxing the Parity Conditions of Asymptotically Flat Gravity, Class. Quant. Grav. 28 (2011) 245016 [Erratum ibid. 30 (2013) 039501] [arXiv:1106.4045] [INSPIRE].
  49. [49]
    C. Troessaert, The BMS4 algebra at spatial infinity, Class. Quant. Grav. 35 (2018) 074003 [arXiv:1704.06223] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    J. Corvino and R.M. Schoen, On the asymptotics for the vacuum Einstein constraint equations, J. Diff. Geom. 73 (2006) 185 [gr-qc/0301071] [INSPIRE].
  51. [51]
    L.-H. Huang, Solutions of special asymptotics to the Einstein constraint equations, Class. Quant. Grav. 27 (2010) 245002 [arXiv:1002.1472] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  52. [52]
    J. Corvino and D. Pollack, Scalar Curvature and the Einstein Constraint Equations, arXiv:1102.5050 [INSPIRE].
  53. [53]
    R. Benguria, P. Cordero and C. Teitelboim, Aspects of the Hamiltonian Dynamics of Interacting Gravitational Gauge and Higgs Fields with Applications to Spherical Symmetry, Nucl. Phys. B 122 (1977) 61 [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    M. Henneaux and C. Teitelboim, Asymptotically anti-de Sitter Spaces, Commun. Math. Phys. 98 (1985) 391 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  55. [55]
    C.W. Misner, The Flatter regions of Newman, Unti and Tamburino’s generalized Schwarzschild space, J. Math. Phys. 4 (1963) 924 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  56. [56]
    C.W. Bunster, S. Cnockaert, M. Henneaux and R. Portugues, Monopoles for gravitation and for higher spin fields, Phys. Rev. D 73 (2006) 105014 [hep-th/0601222] [INSPIRE].ADSMathSciNetGoogle Scholar
  57. [57]
    C. Troessaert, Hamiltonian surface charges using external sources, J. Math. Phys. 57 (2016) 053507 [arXiv:1509.09094] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  58. [58]
    M. Bianchi, D.Z. Freedman and K. Skenderis, How to go with an RG flow, JHEP 08 (2001) 041 [hep-th/0105276] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  59. [59]
    M. Bianchi, D.Z. Freedman and K. Skenderis, Holographic renormalization, Nucl. Phys. B 631 (2002) 159 [hep-th/0112119] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  60. [60]
    M. Henneaux, C. Martinez, R. Troncoso and J. Zanelli, Black holes and asymptotics of 2+1 gravity coupled to a scalar field, Phys. Rev. D 65 (2002) 104007 [hep-th/0201170] [INSPIRE].ADSMathSciNetGoogle Scholar
  61. [61]
    M. Henneaux, C. Martinez, R. Troncoso and J. Zanelli, Asymptotically anti-de Sitter spacetimes and scalar fields with a logarithmic branch, Phys. Rev. D 70 (2004) 044034 [hep-th/0404236] [INSPIRE].ADSMathSciNetGoogle Scholar
  62. [62]
    M. Henneaux, C. Martinez, R. Troncoso and J. Zanelli, Asymptotic behavior and Hamiltonian analysis of anti-de Sitter gravity coupled to scalar fields, Annals Phys. 322 (2007) 824 [hep-th/0603185] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  63. [63]
    J.D. Brown and M. Henneaux, On the Poisson Brackets of Differentiable Generators in Classical Field Theory, J. Math. Phys. 27 (1986) 489 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  64. [64]
    H. Friedrich, Gravitational fields near space-like and null infinity, J. Geom. Phys. 24 (1998) 83.ADSMathSciNetCrossRefMATHGoogle Scholar
  65. [65]
    H. Friedrich and J. Kannar, Bondi type systems near space-like infinity and the calculation of the NP constants, J. Math. Phys. 41 (2000) 2195 [gr-qc/9910077] [INSPIRE].
  66. [66]
    H. Friedrich and J. Kannar, Calculating asymptotic quantities near space-like and null infinity from Cauchy data, Annalen Phys. 9 (2000) 321 [gr-qc/9911103] [INSPIRE].
  67. [67]
    M. Campiglia and R. Eyheralde, Asymptotic U(1) charges at spatial infinity, JHEP 11 (2017) 168 [arXiv:1703.07884] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  68. [68]
    A. Strominger, Asymptotic Symmetries of Yang-Mills Theory, JHEP 07 (2014) 151 [arXiv:1308.0589] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  69. [69]
    G. Barnich and P.-H. Lambert, Einstein-Yang-Mills theory: Asymptotic symmetries, Phys. Rev. D 88 (2013) 103006 [arXiv:1310.2698] [INSPIRE].ADSGoogle Scholar
  70. [70]
    A. Ashtekar and R.O. Hansen, A unified treatment of null and spatial infinity in general relativity. I — Universal structure, asymptotic symmetries and conserved quantities at spatial infinity, J. Math. Phys. 19 (1978) 1542 [INSPIRE].
  71. [71]
    R. Beig and B. Schmidt, Einstein’s equations near spatial infinity, Commun. Math. Phys. 87 (1982) 65.ADSMathSciNetCrossRefMATHGoogle Scholar
  72. [72]
    R. Beig, Integration Of Einstein’s Equations Near Spatial Infinity, Proc. Roy. Soc. Lond. A 391 (1984) 295.ADSMathSciNetCrossRefMATHGoogle Scholar
  73. [73]
    O. Baghchesaraei, R. Fareghbal and Y. Izadi, Flat-Space Holography and Stress Tensor of Kerr Black Hole, Phys. Lett. B 760 (2016) 713 [arXiv:1603.04137] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Université Libre de Bruxelles and International Solvay InstitutesBrusselsBelgium
  2. 2.Collège de FranceParisFrance
  3. 3.Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)PotsdamGermany

Personalised recommendations