Reconstructing particle masses in events with displaced vertices

Open Access
Regular Article - Experimental Physics
  • 29 Downloads

Abstract

We propose a simple way to extract particle masses given a displaced vertex signature in event topologies where two long-lived mother particles decay to visible particles and an invisible daughter. The mother could be either charged or neutral and the neutral daughter could correspond to a dark matter particle in different models. The method allows to extract the parent and daughter masses by using on-shell conditions and energy-momentum conservation, in addition to the displaced decay positions of the parents, which allows to solve the kinematic equations fully on an event-by-event basis. We show the validity of the method by means of simulations including detector effects. If displaced events are seen in discovery searches at the Large Hadron Collider (LHC), this technique can be applied.

Keywords

Beyond Standard Model Dark matter Hadron-Hadron scattering (experiments) Lifetime 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Search for long-lived, massive particles in events with displaced vertices and missing transverse momentum in \( \sqrt{s} = 13 \) TeV pp collisions with the ATLAS detector, arXiv:1710.04901 [INSPIRE].
  2. [2]
    ATLAS collaboration, Search for massive, long-lived particles using multitrack displaced vertices or displaced lepton pairs in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 92 (2015) 072004 [arXiv:1504.05162] [INSPIRE].
  3. [3]
    ATLAS collaboration, Search for long-lived, weakly interacting particles that decay to displaced hadronic jets in proton-proton collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 92 (2015) 012010 [arXiv:1504.03634] [INSPIRE].
  4. [4]
    CMS collaboration, Search for Long-Lived Neutral Particles Decaying to Quark-Antiquark Pairs in Proton-Proton Collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. D 91 (2015) 012007 [arXiv:1411.6530] [INSPIRE].
  5. [5]
    CMS collaboration, Search for long-lived particles that decay into final states containing two electrons or two muons in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. D 91 (2015) 052012 [arXiv:1411.6977] [INSPIRE].
  6. [6]
    LHCb collaboration, Search for massive long-lived particles decaying semileptonically in the LHCb detector, Eur. Phys. J. C 77 (2017) 224 [arXiv:1612.00945] [INSPIRE].
  7. [7]
    LHCb collaboration, Updated search for long-lived particles decaying to jet pairs, Eur. Phys. J. C 77 (2017) 812 [arXiv:1705.07332] [INSPIRE].
  8. [8]
    D. Curtin and R. Sundrum, Flashes of Hidden Worlds at Colliders, arXiv:1702.02524 [INSPIRE].
  9. [9]
    L.J. Hall, K. Jedamzik, J. March-Russell and S.M. West, Freeze-In Production of FIMP Dark Matter, JHEP 03 (2010) 080 [arXiv:0911.1120] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  10. [10]
    J.L. Feng, A. Rajaraman and F. Takayama, SuperWIMP dark matter signals from the early universe, Phys. Rev. D 68 (2003) 063504 [hep-ph/0306024] [INSPIRE].
  11. [11]
    N. Bernal, M. Heikinheimo, T. Tenkanen, K. Tuominen and V. Vaskonen, The Dawn of FIMP Dark Matter: A Review of Models and Constraints, Int. J. Mod. Phys. A 32 (2017) 1730023 [arXiv:1706.07442] [INSPIRE].
  12. [12]
    R.T. Co, F. D’Eramo, L.J. Hall and D. Pappadopulo, Freeze-In Dark Matter with Displaced Signatures at Colliders, JCAP 12 (2015) 024 [arXiv:1506.07532] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    G. Arcadi, L. Covi and F. Dradi, LHC prospects for minimal decaying Dark Matter, JCAP 10 (2014) 063 [arXiv:1408.1005] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    G. Arcadi and L. Covi, Minimal Decaying Dark Matter and the LHC, JCAP 08 (2013) 005 [arXiv:1305.6587] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    S. Chang and M.A. Luty, Displaced Dark Matter at Colliders, arXiv:0906.5013 [INSPIRE].
  16. [16]
    A. Davoli, A. De Simone, T. Jacques and V. Sanz, Displaced Vertices from Pseudo-Dirac Dark Matter, JHEP 11 (2017) 025 [arXiv:1706.08985] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    M. Park and Y. Zhao, Recovering Particle Masses from Missing Energy Signatures with Displaced Tracks, arXiv:1110.1403 [INSPIRE].
  18. [18]
    O. Buchmueller et al., Simplified Models for Displaced Dark Matter Signatures, JHEP 09 (2017) 076 [arXiv:1704.06515] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    B. Gripaios, K. Nagao, M. Nojiri, K. Sakurai and B. Webber, Reconstruction of Higgs bosons in the di-tau channel via 3-prong decay, JHEP 03 (2013) 106 [arXiv:1210.1938] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer and T. Reiter, UFO — The Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    J. Alwall et al., A standard format for Les Houches event files, Comput. Phys. Commun. 176 (2007) 300 [hep-ph/0609017] [INSPIRE].
  23. [23]
    T. Sjöstrand et al., An Introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
  24. [24]
    P.Z. Skands et al., SUSY Les Houches accord: Interfacing SUSY spectrum calculators, decay packages and event generators, JHEP 07 (2004) 036 [hep-ph/0311123] [INSPIRE].
  25. [25]
    B.C. Allanach et al., SUSY Les Houches Accord 2, Comput. Phys. Commun. 180 (2009) 8 [arXiv:0801.0045] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    J.D. Hunter, Matplotlib: A 2d graphics environment, Comput. Sci. Eng. 9 (2007) 90.Google Scholar
  27. [27]
    ATLAS collaboration, Expected Performance of the ATLAS Experiment — Detector, Trigger and Physics, arXiv:0901.0512 [INSPIRE].
  28. [28]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    B.C. Allanach, M. Badziak, G. Cottin, N. Desai, C. Hugonie and R. Ziegler, Prompt Signals and Displaced Vertices in Sparticle Searches for Next-to-Minimal Gauge Mediated Supersymmetric Models, Eur. Phys. J. C 76 (2016) 482 [arXiv:1606.03099] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Cavendish LaboratoryUniversity of CambridgeCambridgeU.K.
  2. 2.Department of PhysicsNational Taiwan UniversityTaipeiTaiwan

Personalised recommendations