Measurement of the inclusive \( \mathrm{t}\overline{\mathrm{t}} \) cross section in pp collisions at \( \sqrt{s}=5.02 \) TeV using final states with at least one charged lepton
The top quark pair production cross section \( \left({\sigma}_{\mathrm{t}\overline{\mathrm{t}}}\right) \) is measured for the first time in pp collisions at a center-of-mass energy of 5.02 TeV. The data were collected by the CMS experiment at the LHC and correspond to an integrated luminosity of 27.4 pb−1. The measurement is performed by analyzing events with at least one charged lepton. The measured cross section is \( {\sigma}_{\mathrm{t}\overline{\mathrm{t}}} \) = 69.5 ± 6.1 (stat) ± 5.6 (syst) ± 1.6 (lumi) pb, with a total relative uncertainty of 12%. The result is in agreement with the expectation from the standard model. The impact of the presented measurement on the determination of the gluon distribution function is investigated.
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
References
[1]
CMS collaboration, Determination of the top-quark pole mass and strong coupling constant from the\( t\overline{t} \)production cross section in pp collisions at\( \sqrt{s}=7 \)TeV, Phys. Lett.B 728 (2014) 496 [Erratum ibid.B 738 (2014) 526] [arXiv:1307.1907] [INSPIRE].
[2]
CMS collaboration, Measurement of double-differential cross sections for top quark pair production in pp collisions at\( \sqrt{s}=8 \)TeV and impact on parton distribution functions, Eur. Phys. J.C 77 (2017) 459 [arXiv:1703.01630] [INSPIRE].
[3]
ATLAS collaboration, Measurement of the top quark pair production cross-section with ATLAS in the single lepton channel, Phys. Lett.B 711 (2012) 244 [arXiv:1201.1889] [INSPIRE].
[4]
ATLAS collaboration, Measurement of the\( t\overline{t} \)production cross-section using eμ events with b-tagged jets in pp collisions at\( \sqrt{s}=7 \)and 8 TeV with the ATLAS detector, Eur. Phys. J.C 74 (2014) 3109 [arXiv:1406.5375] [INSPIRE].
[5]
CMS collaboration, Measurement of the\( t\overline{t} \)production cross section in the e-μ channel in proton-proton collisions at\( \sqrt{s}=7 \)and 8 TeV, JHEP08 (2016) 029 [arXiv:1603.02303] [INSPIRE].
[6]
CMS collaboration, Measurements of the\( \mathrm{t}\overline{\mathrm{t}} \)production cross section in lepton+jets final states in pp collisions at 8 TeV and ratio of 8 to 7 TeV cross sections, Eur. Phys. J.C 77 (2017) 15 [arXiv:1602.09024] [INSPIRE].
[7]
ATLAS collaboration, Measurement of the\( t\overline{t} \)production cross-section using eμ events with b-tagged jets in pp collisions at\( \sqrt{s}=13 \)TeV with the ATLAS detector, Phys. Lett.B 761 (2016) 136 [Erratum ibid.B 772 (2017) 879] [arXiv:1606.02699] [INSPIRE].
[8]
CMS collaboration, Measurement of the top quark pair production cross section in proton-proton collisions at\( \sqrt{s}=13 \)TeV, Phys. Rev. Lett.116 (2016) 052002 [arXiv:1510.05302] [INSPIRE].
[9]
CMS collaboration, Measurement of the\( t\overline{t} \)production cross section using events in the eμ final state in pp collisions at\( \sqrt{s}=13 \)TeV, Eur. Phys. J.C 77 (2017) 172 [arXiv:1611.04040] [INSPIRE].
[10]
CMS collaboration, Measurement of the\( t\overline{t} \)production cross section using events with one lepton and at least one jet in pp collisions at\( \sqrt{s}=13 \)TeV, JHEP09 (2017) 051 [arXiv:1701.06228] [INSPIRE].
[11]
S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with Parton Shower simulations: the POWHEG method, JHEP11 (2007) 070 [arXiv:0709.2092] [INSPIRE].ADSCrossRefGoogle Scholar
[12]
S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP06 (2010) 043 [arXiv:1002.2581] [INSPIRE].ADSCrossRefMATHGoogle Scholar
[13]
S. Frixione, P. Nason and G. Ridolfi, A positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction, JHEP09 (2007) 126 [arXiv:0707.3088] [INSPIRE].ADSCrossRefGoogle Scholar
[14]
NNPDF collaboration, R.D. Ball et al., Parton distributions for the LHC Run II, JHEP04 (2015) 040 [arXiv:1410.8849] [INSPIRE].
[15]
D. d’Enterria, K. Krajczár and H. Paukkunen, Top-quark production in proton-nucleus and nucleus-nucleus collisions at LHC energies and beyond, Phys. Lett.B 746 (2015) 64 [arXiv:1501.05879] [INSPIRE].ADSCrossRefGoogle Scholar
[16]
CMS collaboration, Projections for heavy ions with HL-LHC, CMS-PAS-FTR-13-025 (2013).
[17]
CMS collaboration, Observation of top quark production in proton-nucleus collisions, Phys. Rev. Lett.119 (2017) 242001 [arXiv:1709.07411] [INSPIRE].
P. Skands, S. Carrazza and J. Rojo, Tuning PYTHIA 8.1: the Monash 2013 Tune, Eur. Phys. J.C 74 (2014) 3024 [arXiv:1404.5630] [INSPIRE].
[25]
J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
K. Melnikov and F. Petriello, Electroweak gauge boson production at hadron colliders through O(αs2), Phys. Rev.D 74 (2006) 114017 [hep-ph/0609070] [INSPIRE].
[28]
S. Alioli, P. Nason, C. Oleari and E. Re, NLO single-top production matched with shower in POWHEG: s- and t-channel contributions, JHEP09 (2009) 111 [Erratum ibid.02 (2010) 011] [arXiv:0907.4076] [INSPIRE].
[29]
E. Re, Single-top Wt-channel production matched with parton showers using the POWHEG method, Eur. Phys. J.C 71 (2011) 1547 [arXiv:1009.2450] [INSPIRE].ADSGoogle Scholar
[30]
N. Kidonakis, Top quark production, in the proceedings of the Helmholtz International Summer School on Physics of Heavy Quarks and Hadrons (HQ 2013), July 15–28, Dubna, Russia (2013), arXiv:1311.0283 [INSPIRE].
[31]
J.M. Campbell and R.K. Ellis, MCFM for the Tevatron and the LHC, Nucl. Phys. Proc. Suppl.205-206 (2010) 10 [arXiv:1007.3492] [INSPIRE].
[32]
GEANT4 collaboration, S. Agostinelli et al., GEANT4 - a simulation toolkit, Nucl. Instrum. Meth.A 506 (2003) 250 [INSPIRE].
[33]
M. Czakon and A. Mitov, Top++: a program for the calculation of the top-pair cross-section at hadron colliders, Comput. Phys. Commun.185 (2014) 2930 [arXiv:1112.5675] [INSPIRE].ADSCrossRefGoogle Scholar
[34]
M. Czakon, P. Fiedler and A. Mitov, Total top-quark pair-production cross section at hadron colliders through O(αs4), Phys. Rev. Lett.110 (2013) 252004 [arXiv:1303.6254] [INSPIRE].ADSCrossRefGoogle Scholar
[35]
E. Todesco and J. Wenninger, Large hadron collider momentum calibration and accuracy, Phys. Rev. Accel. Beams20 (2017) 081003 [INSPIRE].ADSCrossRefGoogle Scholar
[36]
CMS collaboration, Particle-flow reconstruction and global event description with the CMS detector, 2017 JINST12 P10003 [arXiv:1706.04965] [INSPIRE].
[37]
CMS collaboration, Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at\( \sqrt{s}=8 \)TeV, 2015 JINST10 P06005 [arXiv:1502.02701] [INSPIRE].
[38]
CMS collaboration, Performance of CMS muon reconstruction in pp collision events at\( \sqrt{s}=7 \)TeV, 2012 JINST7 P10002 [arXiv:1206.4071] [INSPIRE].
[39]
CMS collaboration, The performance of the CMS muon detector in proton-proton collisions at\( \sqrt{s}=7 \)TeV at the LHC, 2013 JINST8 P11002 [arXiv:1306.6905] [INSPIRE].
[40]
CMS collaboration, Performance of missing energy reconstruction in 13 TeV pp collision data using the CMS detector, CMS-PAS-JME-16-004 (2016).
CMS collaboration, Measurements of inclusive W and Z cross sections in pp collisions at\( \sqrt{s}=7 \)TeV, JHEP01 (2011) 080 [arXiv:1012.2466] [INSPIRE].
[45]
CMS collaboration, Determination of jet energy calibration and transverse momentum resolution in CMS, 2011 JINST6 P11002 [arXiv:1107.4277] [INSPIRE].
[46]
CMS collaboration, Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV, submitted to JINST (2017), arXiv:1712.07158 [INSPIRE].
[47]
CMS collaboration, First measurement of the cross section for top-quark pair production in proton-proton collisions at\( \sqrt{s}=7 \)TeV, Phys. Lett.B 695 (2011) 424 [arXiv:1010.5994] [INSPIRE].
[48]
CMS collaboration, Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV, 2017 JINST12 P02014 [arXiv:1607.03663] [INSPIRE].
G. Cowan, K. Cranmer, E. Gross and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J.C 71 (2011) 1554 [Erratum ibid.C 73 (2013) 2501] [arXiv:1007.1727] [INSPIRE].
[51]
L. Lyons, D. Gibaut and P. Clifford, How to combine correlated estimates of a single physical quantity, Nucl. Instrum. Meth.A 270 (1988) 110 [INSPIRE].ADSCrossRefGoogle Scholar
[52]
A. Valassi and R. Chierici, Information and treatment of unknown correlations in the combination of measurements using the BLUE method, Eur. Phys. J.C 74 (2014) 2717 [arXiv:1307.4003] [INSPIRE].ADSCrossRefGoogle Scholar
[53]
L. Lista, The bias of the unbiased estimator: a study of the iterative application of the BLUE method, Nucl. Instrum. Meth.A 764 (2014) 82 [Erratum ibid.A 773 (2015) 87] [arXiv:1405.3425] [INSPIRE].
[54]
L.A. Harland-Lang, A.D. Martin, P. Motylinski and R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs, Eur. Phys. J.C 75 (2015) 204 [arXiv:1412.3989] [INSPIRE].ADSCrossRefGoogle Scholar
[55]
S. Dulat et al., New parton distribution functions from a global analysis of quantum chromodynamics, Phys. Rev.D 93 (2016) 033006 [arXiv:1506.07443] [INSPIRE].ADSGoogle Scholar
[56]
S. Alekhin, J. Blümlein, S. Moch and R. Placakyte, Parton distribution functions, αsand heavy-quark masses for LHC Run II, Phys. Rev.D 96 (2017) 014011 [arXiv:1701.05838] [INSPIRE].ADSGoogle Scholar
[57]
ZEUS, H1 collaboration, H. Abramowicz et al., Combination of measurements of inclusive deep inelastic e±p scattering cross sections and QCD analysis of HERA data, Eur. Phys. J.C 75 (2015) 580 [arXiv:1506.06042] [INSPIRE].
[58]
CMS collaboration, Measurement of the differential cross section and charge asymmetry for inclusive pp → W± + X production at\( \sqrt{s}=8 \)TeV, Eur. Phys. J.C 76 (2016) 469 [arXiv:1603.01803] [INSPIRE].
V.N. Gribov and L.N. Lipatov, Deep inelastic ep scattering in perturbation theory, Sov. J. Nucl. Phys.15 (1972) 438 [INSPIRE].Google Scholar
[62]
G. Altarelli and G. Parisi, Asymptotic freedom in parton language, Nucl. Phys.B 126 (1977) 298 [INSPIRE].ADSCrossRefGoogle Scholar
[63]
G. Curci, W. Furmanski and R. Petronzio, Evolution of parton densities beyond leading order: the nonsinglet case, Nucl. Phys.B 175 (1980) 27 [INSPIRE].ADSCrossRefGoogle Scholar
[64]
W. Furmanski and R. Petronzio, Singlet parton densities beyond leading order, Phys. Lett.97B (1980) 437 [INSPIRE].ADSCrossRefGoogle Scholar
[65]
S. Moch, J.A.M. Vermaseren and A. Vogt, The three loop splitting functions in QCD: the nonsinglet case, Nucl. Phys.B 688 (2004) 101 [hep-ph/0403192] [INSPIRE].
[66]
A. Vogt, S. Moch and J.A.M. Vermaseren, The three-loop splitting functions in QCD: the singlet case, Nucl. Phys.B 691 (2004) 129 [hep-ph/0404111] [INSPIRE].
CMS collaboration, Measurement of the muon charge asymmetry in inclusive pp → W + X production at\( \sqrt{s}=7 \)TeV and an improved determination of light parton distribution functions, Phys. Rev.D 90 (2014) 032004 [arXiv:1312.6283] [INSPIRE].
[71]
W.T. Giele and S. Keller, Implications of hadron collider observables on parton distribution function uncertainties, Phys. Rev.D 58 (1998) 094023 [hep-ph/9803393] [INSPIRE].
[72]
W.T. Giele, S.A. Keller and D.A. Kosower, Parton distribution function uncertainties, hep-ph/0104052 [INSPIRE].