Localization of effective actions in open superstring field theory

Open Access
Regular Article - Theoretical Physics
  • 15 Downloads

Abstract

We consider the construction of the algebraic part of D-branes tree-level effective action from Berkovits open superstring field theory. Applying this construction to the quartic potential of massless fields carrying a specific worldsheet charge, we show that the full contribution to the potential localizes at the boundary of moduli space, reducing to elementary two-point functions. As examples of this general mechanism, we show how the Yang-Mills quartic potential and the instanton effective action of a Dp/D(p − 4) system are reproduced.

Keywords

String Field Theory Superstrings and Heterotic Strings D-branes 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    E. Witten, Interacting field theory of open superstrings, Nucl. Phys. B 276 (1986) 291 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    N. Berkovits, SuperPoincaré invariant superstring field theory, Nucl. Phys. B 450 (1995) 90 [Erratum ibid. B 459 (1996) 439] [hep-th/9503099] [INSPIRE].
  3. [3]
    T. Erler, Superstring field theory and the Wess-Zumino-Witten action, JHEP 10 (2017) 057 [arXiv:1706.02629] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    K. Ohmori and Y. Okawa, Open superstring field theory based on the supermoduli space, arXiv:1703.08214 [INSPIRE].
  5. [5]
    H. Kunitomo, Space-time supersymmetry in WZW-like open superstring field theory, PTEP 2017 (2017) 043B04 [arXiv:1612.08508] [INSPIRE].
  6. [6]
    T. Erler, Supersymmetry in open superstring field theory, JHEP 05 (2017) 113 [arXiv:1610.03251] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    S. Konopka and I. Sachs, Open superstring field theory on the restricted Hilbert space, JHEP 04 (2016) 164 [arXiv:1602.02583] [INSPIRE].ADSMathSciNetGoogle Scholar
  8. [8]
    T. Erler, Y. Okawa and T. Takezaki, Complete action for open superstring field theory with cyclic A structure, JHEP 08 (2016) 012 [arXiv:1602.02582] [INSPIRE].
  9. [9]
    A. Sen, BV master action for heterotic and type II string field theories, JHEP 02 (2016) 087 [arXiv:1508.05387] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    H. Kunitomo and Y. Okawa, Complete action for open superstring field theory, PTEP 2016 (2016) 023B01 [arXiv:1508.00366] [INSPIRE].
  11. [11]
    T. Erler, S. Konopka and I. Sachs, Resolving Witten’s superstring field theory, JHEP 04 (2014) 150 [arXiv:1312.2948] [INSPIRE].
  12. [12]
    Y. Iimori, T. Noumi, Y. Okawa and S. Torii, From the Berkovits formulation to the Witten formulation in open superstring field theory, JHEP 03 (2014) 044 [arXiv:1312.1677] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    N. Berkovits and M. Schnabl, Yang-Mills action from open superstring field theory, JHEP 09 (2003) 022 [hep-th/0307019] [INSPIRE].
  14. [14]
    M. Asada and I. Kishimoto, Super Yang-Mills action from WZW-like open superstring field theory including the Ramond sector, arXiv:1712.05935 [INSPIRE].
  15. [15]
    N. Berkovits, Y. Okawa and B. Zwiebach, WZW-like action for heterotic string field theory, JHEP 11 (2004) 038 [hep-th/0409018] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    D. Friedan, E.J. Martinec and S.H. Shenker, Conformal invariance, supersymmetry and string theory, Nucl. Phys. B 271 (1986) 93 [INSPIRE].
  17. [17]
    T. Banks, L.J. Dixon, D. Friedan and E.J. Martinec, Phenomenology and conformal field theory or can string theory predict the weak mixing angle?, Nucl. Phys. B 299 (1988) 613 [INSPIRE].
  18. [18]
    E. Witten, Noncommutative geometry and string field theory, Nucl. Phys. B 268 (1986) 253 [INSPIRE].
  19. [19]
    M. Schnabl, Wedge states in string field theory, JHEP 01 (2003) 004 [hep-th/0201095] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    A. Sen, Supersymmetry restoration in superstring perturbation theory, JHEP 12 (2015) 075 [arXiv:1508.02481] [INSPIRE].ADSMathSciNetGoogle Scholar
  21. [21]
    E. Witten, Bound states of strings and p-branes, Nucl. Phys. B 460 (1996) 335 [hep-th/9510135] [INSPIRE].
  22. [22]
    M.R. Douglas, Gauge fields and D-branes, J. Geom. Phys. 28 (1998) 255 [hep-th/9604198] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    M. Billó et al., Classical gauge instantons from open strings, JHEP 02 (2003) 045 [hep-th/0211250] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    I. Antoniadis et al., Non-perturbative nekrasov partition function from string theory, Nucl. Phys. B 880 (2014) 87 [arXiv:1309.6688] [INSPIRE].
  25. [25]
    M. Bershadsky, S. Cecotti, H. Ooguri and C. Vafa, Holomorphic anomalies in topological field theories, Nucl. Phys. B 405 (1993) 279 [hep-th/9302103] [INSPIRE].
  26. [26]
    M. Bershadsky, S. Cecotti, H. Ooguri and C. Vafa, Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes, Commun. Math. Phys. 165 (1994) 311 [hep-th/9309140] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Dipartimento di FisicaUniversità di Torino, INFN — Sezione di Torino and Arnold-Regge CenterTorinoItaly

Personalised recommendations