Towards generalized mirror symmetry for twisted connected sum G2 manifolds

Open Access
Regular Article - Theoretical Physics


We revisit our construction of mirror symmetries for compactifications of Type II superstrings on twisted connected sum G2 manifolds. For a given G2 manifold, we discuss evidence for the existence of mirror symmetries of two kinds: one is an autoequivalence for a given Type II superstring on a mirror pair of G2 manifolds, the other is a duality between Type II strings with different chiralities for another pair of mirror manifolds. We clarify the role of the B-field in the construction, and check that the corresponding massless spectra are respected by the generalized mirror maps. We discuss hints towards a homological version based on BPS spectroscopy. We provide several novel examples of smooth, as well as singular, mirror G2 backgrounds via pairs of dual projecting tops. We test our conjectures against a Joyce orbifold example, where we reproduce, using our geometrical methods, the known mirror maps that arise from the SCFT worldsheet perspective. Along the way, we discuss non-Abelian gauge symmetries, and argue for the generation of the Affleck-Harvey-Witten superpotential in the pure SYM case.


String Duality Supersymmetry and Duality 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    B.S. Acharya and S. Gukov, M theory and singularities of exceptional holonomy manifolds, Phys. Rept. 392 (2004) 121 [hep-th/0409191] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    S.L. Shatashvili and C. Vafa, Superstrings and manifold of exceptional holonomy, Selecta Math. 1 (1995) 347 [hep-th/9407025] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    B.S. Acharya, Dirichlet Joyce manifolds, discrete torsion and duality, Nucl. Phys. B 492 (1997) 591 [hep-th/9611036] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    J.M. Figueroa-O’Farrill, A note on the extended superconformal algebras associated with manifolds of exceptional holonomy, Phys. Lett. B 392 (1997) 77 [hep-th/9609113] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    B.S. Acharya, On mirror symmetry for manifolds of exceptional holonomy, Nucl. Phys. B 524 (1998) 269 [hep-th/9707186] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    B.S. Acharya, On realizing N = 1 super Yang-Mills in M-theory, hep-th/0011089 [INSPIRE].
  7. [7]
    S. Gukov, S.-T. Yau and E. Zaslow, Duality and fibrations on G 2 manifolds, hep-th/0203217 [INSPIRE].
  8. [8]
    R. Roiban, C. Romelsberger and J. Walcher, Discrete torsion in singular G 2 manifolds and real LG, Adv. Theor. Math. Phys. 6 (2003) 207 [hep-th/0203272] [INSPIRE].CrossRefMATHGoogle Scholar
  9. [9]
    M.R. Gaberdiel and P. Kaste, Generalized discrete torsion and mirror symmetry for G 2 manifolds, JHEP 08 (2004) 001 [hep-th/0401125] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    J. de Boer, A. Naqvi and A. Shomer, The topological G 2 string, Adv. Theor. Math. Phys. 12 (2008) 243 [hep-th/0506211] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    K. Becker, D. Robbins and E. Witten, The α expansion on a compact manifold of exceptional holonomy, JHEP 06 (2014) 051 [arXiv:1404.2460] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    A. Kovalev, Twisted connected sums and special Riemannian holonomy, J. Reine Angew. Math. 565 (2003) 125.MathSciNetMATHGoogle Scholar
  13. [13]
    A. Corti, M. Haskins, J. Nordström and T. Pacini, Asymptotically cylindrical Calabi-Yau 3-folds from weak Fano 3-folds, Geom. Topol. 17 (2013) 1955.MathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    A. Corti, M. Haskins, J. Nordström and T. Pacini, G2 -manifolds and associative submanifolds via semi-Fano 3-folds, Duke Math. J. 164 (2015) 1971 [arXiv:1207.4470] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    J. Halverson and D.R. Morrison, The landscape of M-theory compactifications on seven-manifolds with G 2 holonomy, JHEP 04 (2015) 047 [arXiv:1412.4123] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    J. Halverson and D.R. Morrison, On gauge enhancement and singular limits in G 2 compactifications of M-theory, JHEP 04 (2016) 100 [arXiv:1507.05965] [INSPIRE].ADSGoogle Scholar
  17. [17]
    A.P. Braun and M. Del Zotto, Mirror symmetry for G 2 -manifolds: twisted connected sums and dual tops, JHEP 05 (2017) 080 [arXiv:1701.05202] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  18. [18]
    T.C. d.C. Guio, H. Jockers, A. Klemm and H.-Y. Yeh, Effective action from M-theory on twisted connected sum G 2 -manifolds, arXiv:1702.05435 [INSPIRE].
  19. [19]
    A.P. Braun and S. Schäfer-Nameki, Compact, singular G 2 -holonomy manifolds and M/Heterotic/F-theory duality, arXiv:1708.07215 [INSPIRE].
  20. [20]
    D.D. Joyce, Compact Riemannian 7-manifolds with holonomy G 2 . I, J. Diff. Geom. 43 (1996) 291.Google Scholar
  21. [21]
    D.D. Joyce, Compact riemannian 7-manifolds with holonomy g 2 . II, J. Diff. Geom. 43 (1996) 329.Google Scholar
  22. [22]
    D. Joyce, Compact manifolds with special holonomy, Oxford mathematical monographs, Oxford University Press, Oxford U.K. (2000).Google Scholar
  23. [23]
    A.P. Braun, Tops as building blocks for G 2 manifolds, JHEP 10 (2017) 083 [arXiv:1602.03521] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    I. Affleck, J.A. Harvey and E. Witten, Instantons and (super)symmetry breaking in (2 + 1)-dimensions, Nucl. Phys. B 206 (1982) 413 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    S.H. Katz and C. Vafa, Geometric engineering of N = 1 quantum field theories, Nucl. Phys. B 497 (1997) 196 [hep-th/9611090] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    J. de Boer, K. Hori, Y. Oz and Z. Yin, Branes and mirror symmetry in N = 2 supersymmetric gauge theories in three-dimensions, Nucl. Phys. B 502 (1997) 107 [hep-th/9702154] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    H. Nicolai and H. Samtleben, Chern-Simons versus Yang-Mills gaugings in three-dimensions, Nucl. Phys. B 668 (2003) 167 [hep-th/0303213] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  28. [28]
    S. Gukov and D. Tong, D-brane probes of G 2 holonomy manifolds, Phys. Rev. D 66 (2002) 087901 [hep-th/0202125] [INSPIRE].ADSGoogle Scholar
  29. [29]
    S. Gukov and D. Tong, D-brane probes of special holonomy manifolds and dynamics of N = 1 three-dimensional gauge theories, JHEP 04 (2002) 050 [hep-th/0202126] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    X. de la Ossa, M. Larfors and E.E. Svanes, Infinitesimal moduli of G 2 holonomy manifolds with instanton bundles, JHEP 11 (2016) 016 [arXiv:1607.03473] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  31. [31]
    X. de la Ossa, M. Larfors and E.E. Svanes, The infinitesimal moduli space of heterotic G 2 systems, Commun. Math. Phys. (2017) [arXiv:1704.08717] [INSPIRE].Google Scholar
  32. [32]
    X. de la Ossa, M. Larfors and E.E. Svanes, Restrictions of heterotic G 2 structures and instanton connections, arXiv:1709.06974 [INSPIRE].
  33. [33]
    M.-A. Fiset, C. Quigley and E.E. Svanes, Marginal deformations of heterotic G 2 σ-models, JHEP 02 (2018) 052 [arXiv:1710.06865] [INSPIRE].CrossRefGoogle Scholar
  34. [34]
    E. Bergshoeff et al., New formulations of D = 10 supersymmetry and D8-O8 domain walls, Class. Quant. Grav. 18 (2001) 3359 [hep-th/0103233] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  35. [35]
    G. Papadopoulos and P.K. Townsend, Compactification of D = 11 supergravity on spaces of exceptional holonomy, Phys. Lett. B 357 (1995) 300 [hep-th/9506150] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    M. Bershadsky et al., Geometric singularities and enhanced gauge symmetries, Nucl. Phys. B 481 (1996) 215 [hep-th/9605200] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  37. [37]
    B.S. Acharya and E. Witten, Chiral fermions from manifolds of G 2 holonomy, hep-th/0109152 [INSPIRE].
  38. [38]
    E. Witten, Anomaly cancellation on G 2 manifolds, hep-th/0108165 [INSPIRE].
  39. [39]
    S. Katz, P. Mayr and C. Vafa, Mirror symmetry and exact solution of 4 − D N = 2 gauge theories: 1., Adv. Theor. Math. Phys. 1 (1998) 53 [hep-th/9706110] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  40. [40]
    S. Cecotti, S. Ferrara and L. Girardello, Geometry of Type II superstrings and the moduli of superconformal field theories, Int. J. Mod. Phys. A 4 (1989) 2475 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  41. [41]
    N.J. Hitchin, A. Karlhede, U. Lindström and M. Roček, HyperKähler metrics and supersymmetry, Commun. Math. Phys. 108 (1987) 535 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  42. [42]
    V.V. Batyrev, Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, J. Alg. Geom. 3 (1994) 493 [alg-geom/9310003] [INSPIRE].MathSciNetMATHGoogle Scholar
  43. [43]
    C. Vafa, Modular invariance and discrete torsion on orbifolds, Nucl. Phys. B 273 (1986) 592 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  44. [44]
    R. Harvey and H.B. Lawson Jr., Calibrated geometries, Acta Math. 148 (1982) 47.MathSciNetCrossRefMATHGoogle Scholar
  45. [45]
    R.C. Mclean, Deformations of calibrated submanifolds, Commun. Anal. Geom. 6 (1996) 705.MathSciNetCrossRefMATHGoogle Scholar
  46. [46]
    D.R. Morrison, On the structure of supersymmetric T 3 fibrations, arXiv:1002.4921 [INSPIRE].
  47. [47]
    M. Gross, Mirror symmetry and the Strominger-Yau-Zaslow conjecture, Curr. Devl. Math. 1 (2012) 133 [arXiv:1212.4220].CrossRefMATHGoogle Scholar
  48. [48]
    P.S. Aspinwall, D.R. Morrison and M. Gross, Stable singularities in string theory, Commun. Math. Phys. 178 (1996) 115 [hep-th/9503208] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  49. [49]
    M. Gross, Special lagrangian fibrations II: geometry, math/9809072.
  50. [50]
    P.S. Aspinwall and D.R. Morrison, String theory on K3 surfaces, hep-th/9404151 [INSPIRE].
  51. [51]
    V.V. Nikulin, Integer symmetric bilinear forms and some of their geometric applications, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979) 111.MathSciNetMATHGoogle Scholar
  52. [52]
    K. Becker et al., Supersymmetric cycles in exceptional holonomy manifolds and Calabi-Yau 4 folds, Nucl. Phys. B 480 (1996) 225 [hep-th/9608116] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  53. [53]
    R. Blumenhagen and V. Braun, Superconformal field theories for compact G 2 manifolds, JHEP 12 (2001) 006 [hep-th/0110232] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    R. Roiban and J. Walcher, Rational conformal field theories with G 2 holonomy, JHEP 12 (2001) 008 [hep-th/0110302] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    J. Gutowski and G. Papadopoulos, Moduli spaces and brane solitons for M-theory compactifications on holonomy G 2 manifolds, Nucl. Phys. B 615 (2001) 237 [hep-th/0104105] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  56. [56]
    M. Atiyah and E. Witten, M theory dynamics on a manifold of G 2 holonomy, Adv. Theor. Math. Phys. 6 (2003) 1 [hep-th/0107177] [INSPIRE].CrossRefMATHGoogle Scholar
  57. [57]
    S. Cecotti, A. Neitzke and C. Vafa, R-twisting and 4d/2d correspondences, arXiv:1006.3435 [INSPIRE].
  58. [58]
    S. Cecotti and M. Del Zotto, 4d N = 2 gauge theories and quivers: the non-simply laced case, JHEP 10 (2012) 190 [arXiv:1207.7205] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  59. [59]
    B. Fiol, The BPS spectrum of N = 2 SU(N ) SYM and parton branes, JHEP 02 (2006) 065 [hep-th/0012079] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  60. [60]
    S. Cecotti, Categorical tinkertoys for N = 2 gauge theories, Int. J. Mod. Phys. A 28 (2013) 1330006 [arXiv:1203.6734] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  61. [61]
    S.H. Katz and C. Vafa, Matter from geometry, Nucl. Phys. B 497 (1997) 146 [hep-th/9606086] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  62. [62]
    S. Cecotti, M. Del Zotto and S. Giacomelli, More on the N = 2 superconformal systems of type D p(G), JHEP 04 (2013) 153 [arXiv:1303.3149] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  63. [63]
    A. Kovalev and J. Nordström, Asymptotically cylindrical 7-manifolds of holonomy g2 with applications to compact irreducible G 2 -manifolds, Ann. Global Anal. Geom. 38 (2010) 221 [arXiv:0907.0497].MathSciNetCrossRefMATHGoogle Scholar
  64. [64]
    J. Nordström, Deformations and gluing of asymptotically cylindrical manifolds with exceptional holonomy, Ph.D. Thesis, Cambridge University, Cambridge U.K. (2008).Google Scholar
  65. [65]
    G. Curio and D. Lüst, A class of N = 1 dual string pairs and its modular superpotential, Int. J. Mod. Phys. A 12 (1997) 5847 [hep-th/9703007] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  66. [66]
    V.V. Nikulin, Discrete reflection groups in lobachevsky spaces and algebraic surfaces, in the proceedings of the International Congress of Mathematicians (ICM 1986), August 3-11, Berkeley, U.S.A. (1986).Google Scholar
  67. [67]
    W. Nahm and K. Wendland, A Hiker’s guide to K3: aspects of N = (4, 4) superconformal field theory with central charge c = 6, Commun. Math. Phys. 216 (2001) 85 [hep-th/9912067] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  68. [68]
    A.P. Braun, R. Ebert, A. Hebecker and R. Valandro, Weierstrass meets Enriques, JHEP 02 (2010) 077 [arXiv:0907.2691] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  69. [69]
    J. Conway and N. Sloane, Sphere packings, lattices and groups, Grundlehren der mathematischen Wissenschaften. Springer, Germany (1998).Google Scholar
  70. [70]
    P. Candelas and A. Font, Duality between the webs of heterotic and type-II vacua, Nucl. Phys. B 511 (1998) 295 [hep-th/9603170] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  71. [71]
    E. Perevalov and H. Skarke, Enhanced gauged symmetry in type-II and F theory compactifications: Dynkin diagrams from polyhedra, Nucl. Phys. B 505 (1997) 679 [hep-th/9704129] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  72. [72]
    V.S. Kulikov, Degenerations of K3 surfaces and enriques surfaces, math. USRR-Izv. 11 (1977) 957.CrossRefMATHGoogle Scholar
  73. [73]
    U. Persson and H. Pinkham, Degeneration of surfaces with trivial canonical bundle, Ann. Math. 113 (1981) 45.MathSciNetCrossRefMATHGoogle Scholar
  74. [74]
    R. Davis et al., Short tops and semistable degenerations, arXiv:1307.6514.
  75. [75]
    A.P. Braun and T. Watari, Heterotic-type IIA duality and degenerations of K3 surfaces, JHEP 08 (2016) 034 [arXiv:1604.06437] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  76. [76]
    D. Huybrechts, Moduli spaces of hyperkaehler manifolds and mirror symmetry, math/0210219.

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Mathematical InstituteUniversity of OxfordOxfordU.K.
  2. 2.Simons Center for Geometry and PhysicsSUNYStony BrookU.S.A.

Personalised recommendations