Advertisement

Chiral algebras in Landau-Ginzburg models

  • Mykola Dedushenko
Open Access
Regular Article - Theoretical Physics

Abstract

Chiral algebras in the cohomology of the \( {\overline{Q}}_{+} \) supercharge of two-dimensional \( \mathcal{N}=\left(0,2\right) \) theories on flat spacetime are discussed. Using the supercurrent multiplet, we show that the answer is renormalization group invariant for theories with an R-symmetry. For \( \mathcal{N}=\left(0,2\right) \) Landau-Ginzburg models, the chiral algebra is determined by the operator equations of motion, which preserve their classical form, and quantum renormalization of composite operators. We study these theories and then specialize to the \( \mathcal{N}=\left(2,2\right) \) models and consider some examples.

Keywords

Conformal and W Symmetry Conformal Field Theory Extended Supersymmetry Field Theories in Lower Dimensions 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    E. Witten, Phases of N = 2 theories in two-dimensions, Nucl. Phys. B 403 (1993) 159 [hep-th/9301042] [INSPIRE].
  2. [2]
    J. Distler and S. Kachru, (0, 2) Landau-Ginzburg theory, Nucl. Phys. B 413 (1994) 213 [hep-th/9309110] [INSPIRE].
  3. [3]
    J. Distler, Notes on (0, 2) superconformal field theories, hep-th/9502012 [INSPIRE].
  4. [4]
    A. Gadde, S. Gukov and P. Putrov, Fivebranes and 4-manifolds, arXiv:1306.4320 [INSPIRE].
  5. [5]
    A. Gadde, S. Gukov and P. Putrov, (0, 2) trialities, JHEP 03 (2014) 076 [arXiv:1310.0818] [INSPIRE].
  6. [6]
    A. Gadde, S. Gukov and P. Putrov, Exact solutions of 2d supersymmetric gauge theories, arXiv:1404.5314 [INSPIRE].
  7. [7]
    I.V. Melnikov, (0, 2) Landau-Ginzburg models and residues, JHEP 09 (2009) 118 [arXiv:0902.3908] [INSPIRE].
  8. [8]
    M. Bertolini, I.V. Melnikov and M.R. Plesser, Accidents in (0, 2) Landau-Ginzburg theories, JHEP 12 (2014) 157 [arXiv:1405.4266] [INSPIRE].
  9. [9]
    C. Vafa, Superstring vacua, in the proceedings of the Summer School on High energy physics and cosmology, June 26-August 18, ICTP, Trieste, Italy (1989).Google Scholar
  10. [10]
    E. Witten, On the Landau-Ginzburg description of N = 2 minimal models, Int. J. Mod. Phys. A 9 (1994) 4783 [hep-th/9304026] [INSPIRE].
  11. [11]
    E. Silverstein and E. Witten, Global U(1)R symmetry and conformal invariance of (0, 2) models, Phys. Lett. B 328 (1994) 307 [hep-th/9403054] [INSPIRE].
  12. [12]
    E. Witten, Two-dimensional models with (0, 2) supersymmetry: perturbative aspects, Adv. Theor. Math. Phys. 11 (2007) 1 [hep-th/0504078] [INSPIRE].
  13. [13]
    M.-C. Tan, Two-dimensional twisted σ-models and the theory of chiral differential operators, Adv. Theor. Math. Phys. 10 (2006) 759 [hep-th/0604179] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    M.-C. Tan and J. Yagi, Chiral algebras of (0, 2) σ-models: beyond perturbation theory, Lett. Math. Phys. 84 (2008) 257 [arXiv:0801.4782] [INSPIRE].
  15. [15]
    J. Yagi, Chiral algebras of (0, 2) models, Adv. Theor. Math. Phys. 16 (2012) 1 [arXiv:1001.0118] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    S.H. Katz and E. Sharpe, Notes on certain (0, 2) correlation functions, Commun. Math. Phys. 262 (2006) 611 [hep-th/0406226] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    J. Guffin and E. Sharpe, A-twisted Landau-Ginzburg models, J. Geom. Phys. 59 (2009) 1547 [arXiv:0801.3836] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    J. Guffin and E. Sharpe, A-twisted heterotic Landau-Ginzburg models, J. Geom. Phys. 59 (2009) 1581 [arXiv:0801.3955] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    J. Guo, B. Jia and E. Sharpe, Chiral operators in two-dimensional (0, 2) theories and a test of triality, JHEP 06 (2015) 201 [arXiv:1501.00987] [INSPIRE].
  20. [20]
    T.T. Dumitrescu and N. Seiberg, Supercurrents and brane currents in diverse dimensions, JHEP 07 (2011) 095 [arXiv:1106.0031] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    W. Lerche, C. Vafa and N.P. Warner, Chiral rings in N = 2 superconformal theories, Nucl. Phys. B 324 (1989) 427 [INSPIRE].
  22. [22]
    J. Polchinski, Scale and conformal invariance in quantum field theory, Nucl. Phys. B 303 (1988) 226 [INSPIRE].
  23. [23]
    F. Benini and N. Bobev, Exact two-dimensional superconformal R-symmetry and c-extremization, Phys. Rev. Lett. 110 (2013) 061601 [arXiv:1211.4030] [INSPIRE].
  24. [24]
    C. Vafa and N.P. Warner, Catastrophes and the classification of conformal theories, Phys. Lett. B 218 (1989) 51 [INSPIRE].
  25. [25]
    P. Di Vecchia, J.L. Petersen and H.B. Zheng, N = 2 extended superconformal theories in two-dimensions, Phys. Lett. 162B (1985) 327 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    P. Di Vecchia, J.L. Petersen and M. Yu, On the unitary representations of N = 2 superconformal theory, Phys. Lett. B 172 (1986) 211 [INSPIRE].
  27. [27]
    P. Di Vecchia, J.L. Petersen, M. Yu and H.B. Zheng, Explicit construction of unitary representations of the N = 2 superconformal algebra, Phys. Lett. B 174 (1986) 280 [INSPIRE].
  28. [28]
    W. Boucher, D. Friedan and A. Kent, Determinant formulae and unitarity for the N = 2 superconformal algebras in two-dimensions or exact results on string compactification, Phys. Lett. B 172 (1986) 316 [INSPIRE].
  29. [29]
    G. Mussardo, G. Sotkov and M. Stanishkov, N = 2 superconformal minimal models, Int. J. Mod. Phys. A 4 (1989) 1135 [INSPIRE].
  30. [30]
    A. Cappelli, C. Itzykson and J.B. Zuber, Modular invariant partition functions in two-dimensions, Nucl. Phys. B 280 (1987) 445 [INSPIRE].
  31. [31]
    A. Cappelli, Modular invariant partition functions of superconformal theories, Phys. Lett. B 185 (1987) 82 [INSPIRE].
  32. [32]
    D. Gepner and Z.-A. Qiu, Modular invariant partition functions for parafermionic field theories, Nucl. Phys. B 285 (1987) 423 [INSPIRE].
  33. [33]
    D. Gepner, Space-time supersymmetry in compactified string theory and superconformal models, Nucl. Phys. B 296 (1988) 757 [INSPIRE].
  34. [34]
    K. Mohri, N = 2 super-W algebra in half twisted Landau-Ginzburg model, Int. J. Mod. Phys. A 9 (1994) 5097 [hep-th/9307029] [INSPIRE].
  35. [35]
    C. Beem et al., Infinite chiral symmetry in four dimensions, Commun. Math. Phys. 336 (2015) 1359 [arXiv:1312.5344] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Joseph Henry LaboratoriesPrinceton UniversityPrincetonU.S.A.

Personalised recommendations