Advertisement

Top-philic Z forces at the LHC

  • Patrick J. Fox
  • Ian Low
  • Yue Zhang
Open Access
Regular Article - Theoretical Physics
  • 56 Downloads

Abstract

Despite extensive searches for an additional neutral massive gauge boson at the LHC, a Z at the weak scale could still be present if its couplings to the first two generations of quarks are suppressed, in which case the production in hadron colliders relies on tree-level processes in association with heavy flavors or one-loop processes in association with a jet. We consider the low-energy effective theory of a top-philic Z and present possible UV completions. We clarify theoretical subtleties in evaluating the production of a top-philic Z at the LHC and examine carefully the treatment of ananomalous Z current in the low-energy effective theory. Recipes for properly computing the production rate in the Z + j channel are given. We discuss constraints from colliders and low-energy probes of new physics. As an application, we apply these considerations to models that use a weak-scale Z to explain possible violations of lepton universality in B meson decays, and show that the future running of a high luminosity LHC can potentially cover much of the remaining parameter space favored by this particular interpretation of the B physics anomaly.

Keywords

Anomalies in Field and String Theories Beyond Standard Model 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Search for new high-mass phenomena in the dilepton final state using 36 fb −1 of proton-proton collision data at \( \sqrt{s}=13 \) TeV with the ATLAS detector, JHEP 10 (2017) 182 [arXiv:1707.02424] [INSPIRE].
  2. [2]
    CMS collaboration, Search for new phenomena with the M T 2 variable in the all-hadronic final state produced in proton-proton collisions at \( \sqrt{s}=13 \) TeV, Eur. Phys. J. C 77 (2017) 710 [arXiv:1705.04650] [INSPIRE].
  3. [3]
    LHC Higgs Cross section Working Group collaboration, D. de Florian et al., Handbook of LHC Higgs Cross sections: 4. Deciphering the Nature of the Higgs Sector, arXiv:1610.07922 [INSPIRE].
  4. [4]
    J. Alexander et al., Dark Sectors 2016 Workshop: Community Report, arXiv:1608.08632 [INSPIRE].
  5. [5]
    J.L. Hewett and T.G. Rizzo, Low-Energy Phenomenology of Superstring Inspired E 6 Models, Phys. Rept. 183 (1989) 193 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    A. Leike, The Phenomenology of extra neutral gauge bosons, Phys. Rept. 317 (1999) 143 [hep-ph/9805494] [INSPIRE].
  7. [7]
    P. Langacker, The Physics of Heavy Z Gauge Bosons, Rev. Mod. Phys. 81 (2009) 1199 [arXiv:0801.1345] [INSPIRE].
  8. [8]
    K. Agashe et al., LHC Signals for Warped Electroweak Neutral Gauge Bosons, Phys. Rev. D 76 (2007) 115015 [arXiv:0709.0007] [INSPIRE].
  9. [9]
    D. Liu, J. Liu, C.E.M. Wagner and X.-P. Wang, Bottom-quark Forward-Backward Asymmetry, Dark Matter and the LHC, arXiv:1712.05802 [INSPIRE].
  10. [10]
    N. Greiner, K. Kong, J.-C. Park, S.C. Park and J.-C. Winter, Model-Independent Production of a Top-Philic Resonance at the LHC, JHEP 04 (2015) 029 [arXiv:1410.6099] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    P. Cox, A.D. Medina, T.S. Ray and A. Spray, Novel collider and dark matter phenomenology of a top-philic Z , JHEP 06 (2016) 110 [arXiv:1512.00471] [INSPIRE].
  12. [12]
    J.H. Kim, K. Kong, S.J. Lee and G. Mohlabeng, Probing TeV scale Top-Philic Resonances with Boosted Top-Tagging at the High Luminosity LHC, Phys. Rev. D 94 (2016) 035023 [arXiv:1604.07421] [INSPIRE].
  13. [13]
    J.F. Kamenik, Y. Soreq and J. Zupan, Lepton flavor universality violation without new sources of quark flavor violation, Phys. Rev. D 97 (2018) 035002 [arXiv:1704.06005] [INSPIRE].
  14. [14]
    I. Antoniadis, A. Boyarsky, S. Espahbodi, O. Ruchayskiy and J.D. Wells, Anomaly driven signatures of new invisible physics at the Large Hadron Collider, Nucl. Phys. B 824 (2010) 296 [arXiv:0901.0639] [INSPIRE].
  15. [15]
    E. Dudas, Y. Mambrini, S. Pokorski and A. Romagnoni, (In)visible Z-prime and dark matter, JHEP 08 (2009) 014 [arXiv:0904.1745] [INSPIRE].
  16. [16]
    A. Ekstedt, R. Enberg, G. Ingelman, J. Löfgren and T. Mandal, Minimal anomalous U(1) theories and collider phenomenology, JHEP 02 (2018) 152 [arXiv:1712.03410] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    E. Dudas, L. Heurtier, Y. Mambrini and B. Zaldivar, Extra U(1), effective operators, anomalies and dark matter, JHEP 11 (2013) 083 [arXiv:1307.0005] [INSPIRE].
  18. [18]
    J.A. Dror, R. Lasenby and M. Pospelov, New constraints on light vectors coupled to anomalous currents, Phys. Rev. Lett. 119 (2017) 141803 [arXiv:1705.06726] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    J.A. Dror, R. Lasenby and M. Pospelov, Dark forces coupled to nonconserved currents, Phys. Rev. D 96 (2017) 075036 [arXiv:1707.01503] [INSPIRE].
  20. [20]
    C.B. Jackson, G. Servant, G. Shaughnessy, T.M.P. Tait and M. Taoso, Higgs in Space!, JCAP 04 (2010) 004 [arXiv:0912.0004] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    Y. Zhang, Top Quark Mediated Dark Matter, Phys. Lett. B 720 (2013) 137 [arXiv:1212.2730] [INSPIRE].
  22. [22]
    C.B. Jackson, G. Servant, G. Shaughnessy, T.M.P. Tait and M. Taoso, Gamma Rays from Top-Mediated Dark Matter Annihilations, JCAP 07 (2013) 006 [arXiv:1303.4717] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    C.B. Jackson, G. Servant, G. Shaughnessy, T.M.P. Tait and M. Taoso, Gamma-ray lines and One-Loop Continuum from s-channel Dark Matter Annihilations, JCAP 07 (2013) 021 [arXiv:1302.1802] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    A. Ismail, A. Katz and D. Racco, On dark matter interactions with the Standard Model through an anomalous Z , JHEP 10 (2017) 165 [arXiv:1707.00709] [INSPIRE].
  25. [25]
    A. Ismail and A. Katz, Anomalous Z and Diboson Resonances at the LHC, arXiv:1712.01840 [INSPIRE].
  26. [26]
    J. Russell and D. Tucker-Smith, Phenomenology of a UV Complete Model for a Top-Friendly Z , Student Thesis, Williams College (2016).Google Scholar
  27. [27]
    J. Preskill, Gauge anomalies in an effective field theory, Annals Phys. 210 (1991) 323 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    W.A. Bardeen and B. Zumino, Consistent and Covariant Anomalies in Gauge and Gravitational Theories, Nucl. Phys. B 244 (1984) 421 [INSPIRE].
  29. [29]
    J. Wess and B. Zumino, Consequences of anomalous Ward identities, Phys. Lett. B 37 (1971) 95 [INSPIRE].
  30. [30]
    E. D’Hoker and E. Farhi, Decoupling a Fermion Whose Mass Is Generated by a Yukawa Coupling: The General Case, Nucl. Phys. B 248 (1984) 59 [INSPIRE].
  31. [31]
    E. D’Hoker and E. Farhi, Decoupling a Fermion in the Standard Electroweak Theory, Nucl. Phys. B 248 (1984) 77 [INSPIRE].
  32. [32]
    L.D. Landau, On the angular momentum of a system of two photons, Dokl. Akad. Nauk Ser. Fiz. 60 (1948) 207 [INSPIRE].Google Scholar
  33. [33]
    C.-N. Yang, Selection Rules for the Dematerialization of a Particle Into Two Photons, Phys. Rev. 77 (1950) 242 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  34. [34]
    W.-Y. Keung, I. Low and J. Shu, Landau-Yang Theorem and Decays of a Z Boson into Two Z Bosons, Phys. Rev. Lett. 101 (2008) 091802 [arXiv:0806.2864] [INSPIRE].
  35. [35]
    A. Denner, S. Dittmaier, M. Roth and D. Wackeroth, Predictions for all processes e + e → 4 f ermions + γ, Nucl. Phys. B 560 (1999) 33 [hep-ph/9904472] [INSPIRE].
  36. [36]
    A. Denner, S. Dittmaier, M. Roth and L.H. Wieders, Electroweak corrections to charged-current e + e → 4 fermion processes: Technical details and further results, Nucl. Phys. B 724 (2005) 247 [Erratum ibid. B 854 (2012) 504] [hep-ph/0505042] [INSPIRE].
  37. [37]
    A. Denner and J.-N. Lang, The Complex-Mass Scheme and Unitarity in perturbative Quantum Field Theory, Eur. Phys. J. C 75 (2015) 377 [arXiv:1406.6280] [INSPIRE].
  38. [38]
    P. Artoisenet et al., A framework for Higgs characterisation, JHEP 11 (2013) 043 [arXiv:1306.6464] [INSPIRE].
  39. [39]
    P.J. Fox, J. Liu, D. Tucker-Smith and N. Weiner, An Effective Z , Phys. Rev. D 84 (2011) 115006 [arXiv:1104.4127] [INSPIRE].
  40. [40]
    ATLAS, CMS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s}=7 \) and 8 TeV, JHEP 08 (2016) 045 [arXiv:1606.02266] [INSPIRE].
  41. [41]
    N.D. Christensen and C. Duhr, FeynRules — Feynman rules made easy, Comput. Phys. Commun. 180 (2009) 1614 [arXiv:0806.4194] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: Going Beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  43. [43]
    T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].
  44. [44]
    NNPDF collaboration, R.D. Ball et al., Parton distributions for the LHC Run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE].
  45. [45]
    T. Carli et al., A posteriori inclusion of parton density functions in NLO QCD final-state calculations at hadron colliders: The APPLGRID Project, Eur. Phys. J. C 66 (2010) 503 [arXiv:0911.2985] [INSPIRE].
  46. [46]
    L. Rosenberg, Electromagnetic interactions of neutrinos, Phys. Rev. 129 (1963) 2786 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  47. [47]
    ATLAS collaboration, Search for heavy particles decaying to pairs of highly-boosted top quarks using lepton-plus-jets events in proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-014 (2016).
  48. [48]
    CMS collaboration, Search for standard model production of four top quarks with same-sign and multilepton final states in proton-proton collisions at \( \sqrt{s}=13 \) TeV, Eur. Phys. J. C 78 (2018) 140 [arXiv:1710.10614] [INSPIRE].
  49. [49]
    E. Alvarez and M. Estevez, \( t\overline{t}b\overline{b} \) as a probe of new physics at the LHC, Phys. Rev. D 96 (2017) 035016 [arXiv:1701.04427] [INSPIRE].
  50. [50]
    M. Czakon and A. Mitov, Top++: A Program for the Calculation of the Top-Pair Cross-Section at Hadron Colliders, Comput. Phys. Commun. 185 (2014) 2930 [arXiv:1112.5675] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    B.A. Dobrescu and F. Yu, Exotic Signals of Vectorlike Quarks, arXiv:1612.01909 [INSPIRE].
  52. [52]
    E. Alvarez, D.A. Faroughy, J.F. Kamenik, R. Morales and A. Szynkman, Four Tops for LHC, Nucl. Phys. B 915 (2017) 19 [arXiv:1611.05032] [INSPIRE].
  53. [53]
    CMS collaboration, Search for supersymmetry in events with at least three electrons or muons, jets and missing transverse momentum in proton-proton collisions at \( \sqrt{s}=13 \) TeV, JHEP 02 (2018) 067 [arXiv:1710.09154] [INSPIRE].
  54. [54]
    CMS collaboration, Search for electroweak production of charginos and neutralinos in multilepton final states in proton-proton collisions at \( \sqrt{s}=13 \) TeV, arXiv:1709.05406 [INSPIRE].
  55. [55]
    S. Descotes-Genon, L. Hofer, J. Matias and J. Virto, Global analysis of bsℓℓ anomalies, JHEP 06 (2016) 092 [arXiv:1510.04239] [INSPIRE].
  56. [56]
    M. Ciuchini et al., On Flavourful Easter eggs for New Physics hunger and Lepton Flavour Universality violation, Eur. Phys. J. C 77 (2017) 688 [arXiv:1704.05447] [INSPIRE].
  57. [57]
    B. Capdevila, A. Crivellin, S. Descotes-Genon, J. Matias and J. Virto, Patterns of New Physics in bsℓ + transitions in the light of recent data, JHEP 01 (2018) 093 [arXiv:1704.05340] [INSPIRE].
  58. [58]
    G. D’Amico et al., Flavour anomalies after the R Kmeasurement, JHEP 09 (2017) 010 [arXiv:1704.05438] [INSPIRE].
  59. [59]
    W. Altmannshofer, P. Stangl and D.M. Straub, Interpreting Hints for Lepton Flavor Universality Violation, Phys. Rev. D 96 (2017) 055008 [arXiv:1704.05435] [INSPIRE].
  60. [60]
    L.-S. Geng, B. Grinstein, S. Jäger, J. Martin Camalich, X.-L. Ren and R.-X. Shi, Towards the discovery of new physics with lepton-universality ratios of bsℓℓ decays, Phys. Rev. D 96 (2017) 093006 [arXiv:1704.05446] [INSPIRE].
  61. [61]
    G. Hiller and I. Nisandzic, R K and R Kbeyond the standard model, Phys. Rev. D 96 (2017) 035003 [arXiv:1704.05444] [INSPIRE].
  62. [62]
    A. Celis, J. Fuentes-Martin, A. Vicente and J. Virto, Gauge-invariant implications of the LHCb measurements on lepton-flavor nonuniversality, Phys. Rev. D 96 (2017) 035026 [arXiv:1704.05672] [INSPIRE].
  63. [63]
    D. Ghosh, Explaining the R K and R Kanomalies, Eur. Phys. J. C 77 (2017) 694 [arXiv:1704.06240] [INSPIRE].
  64. [64]
    A.K. Alok, B. Bhattacharya, A. Datta, D. Kumar, J. Kumar and D. London, New Physics in b + μ after the Measurement of R K∗, Phys. Rev. D 96 (2017) 095009 [arXiv:1704.07397] [INSPIRE].
  65. [65]
    C.-Y. Chen, S. Dawson and M. Sher, Heavy Higgs Searches and Constraints on Two Higgs Doublet Models, Phys. Rev. D 88 (2013) 015018 [Erratum ibid. D 88 (2013) 039901] [arXiv:1305.1624] [INSPIRE].
  66. [66]
    N. Craig, F. D’Eramo, P. Draper, S. Thomas and H. Zhang, The Hunt for the Rest of the Higgs Bosons, JHEP 06 (2015) 137 [arXiv:1504.04630] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    C.-Y. Chen, S. Dawson and Y. Zhang, Complementarity of LHC and EDMs for Exploring Higgs CP-violation, JHEP 06 (2015) 056 [arXiv:1503.01114] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    W. Altmannshofer, S. Gori, M. Pospelov and I. Yavin, Neutrino Trident Production: A Powerful Probe of New Physics with Neutrino Beams, Phys. Rev. Lett. 113 (2014) 091801 [arXiv:1406.2332] [INSPIRE].
  70. [70]
    Particle Data Group collaboration, C. Patrignani et al., Review of Particle Physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
  71. [71]
    ALEPH, DELPHI, L3, OPAL, SLD collaborations, the LEP Electroweak Working Group, the SLD Electroweak, the SLD Heavy Flavour Group, S. Schael et al., Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [INSPIRE].
  72. [72]
    W. Altmannshofer, C.-Y. Chen, P.S. Bhupal Dev and A. Soni, Lepton flavor violating Z explanation of the muon anomalous magnetic moment, Phys. Lett. B 762 (2016) 389 [arXiv:1607.06832] [INSPIRE].
  73. [73]
    F. Jegerlehner, Muon g-2 theory: The hadronic part, EPJ Web Conf. 166 (2018) 00022 [arXiv:1705.00263] [INSPIRE].
  74. [74]
    F.S. Queiroz and W. Shepherd, New Physics Contributions to the Muon Anomalous Magnetic Moment: A Numerical Code, Phys. Rev. D 89 (2014) 095024 [arXiv:1403.2309] [INSPIRE].
  75. [75]
    T. Inami and C.S. Lim, Effects of Superheavy Quarks and Leptons in Low-Energy Weak Processes \( {K}_L\to \mu \overline{\mu},\ {K}^{+}\to {\pi}^{+}\nu \overline{\nu} \) and \( {K}^0\leftrightarrow {\overline{K}}^0 \), Prog. Theor. Phys. 65 (1981) 297 [Erratum ibid. 65 (1981) 1772] [INSPIRE].
  76. [76]
    X.-G. He, J. Tandean and G. Valencia, Penguin and Box Diagrams in Unitary Gauge, Eur. Phys. J. C 64 (2009) 681 [arXiv:0909.3638] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Theoretical Physics Department, FermilabBataviaU.S.A.
  2. 2.High Energy Physics Division, Argonne National LaboratoryArgonneU.S.A.
  3. 3.Department of Physics and AstronomyNorthwestern UniversityEvanstonU.S.A.
  4. 4.Theoretical Physics Department, CERNGeneva 23Switzerland

Personalised recommendations