Advertisement

Gravitational parity anomaly with and without boundaries

  • Maxim Kurkov
  • Dmitri Vassilevich
Open Access
Regular Article - Theoretical Physics

Abstract

In this paper we consider gravitational parity anomaly in three and four dimensions. We start with a re-computation of this anomaly on a 3D manifold without boundaries and with a critical comparison of our results to the previous calculations. Then we compute the anomaly on 4D manifolds with boundaries with local bag boundary conditions. We find, that gravitational parity anomaly is localized on the boundary and contains a gravitational Chern-Simons terms together with a term depending of the extrinsic curvature. We also discuss the main properties of the anomaly, as the conformal invariance, relations between 3D and 4D anomalies, etc.

Keywords

Anomalies in Field and String Theories Chern-Simons Theories Field Theories in Lower Dimensions 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A.J. Niemi and G.W. Semenoff, Axial Anomaly Induced Fermion Fractionization and Effective Gauge Theory Actions in Odd Dimensional Space-Times, Phys. Rev. Lett. 51 (1983) 2077 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    A.N. Redlich, Parity Violation and Gauge Noninvariance of the Effective Gauge Field Action in Three-Dimensions, Phys. Rev. D 29 (1984) 2366 [INSPIRE].ADSMathSciNetGoogle Scholar
  3. [3]
    L. Álvarez-Gaumé, S. Della Pietra and G.W. Moore, Anomalies and Odd Dimensions, Annals Phys. 163 (1985) 288 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    M. Kurkov and D. Vassilevich, Parity anomaly in four dimensions, Phys. Rev. D 96 (2017) 025011 [arXiv:1704.06736] [INSPIRE].ADSGoogle Scholar
  5. [5]
    E. Witten, Fermion Path Integrals And Topological Phases, Rev. Mod. Phys. 88 (2016) 035001 [arXiv:1508.04715] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    L. Müller and R.J. Szabo, Extended quantum field theory, index theory and the parity anomaly, arXiv:1709.03860 [INSPIRE].
  7. [7]
    M. Mulligan and F.J. Burnell, Topological Insulators Avoid the Parity Anomaly, Phys. Rev. B 88 (2013) 085104 [arXiv:1301.4230] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    H. Fukaya, T. Onogi and S. Yamaguchi, Atiyah-Patodi-Singer index from the domain-wall fermion Dirac operator, Phys. Rev. D 96 (2017) 125004 [arXiv:1710.03379] [INSPIRE].ADSGoogle Scholar
  9. [9]
    E.J. König, P.M. Ostrovsky, I.V. Protopopov, I.V. Gornyi, I.S. Burmistrov and A.D. Mirlin, Half-integer quantum Hall effect of disordered Dirac fermions at a topological insulator surface, Phys. Rev. B 90 (2014) 165435 [arXiv:1406.5008] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    C.P. Herzog, K.-W. Huang and K. Jensen, Universal Entanglement and Boundary Geometry in Conformal Field Theory, JHEP 01 (2016) 162 [arXiv:1510.00021] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    D. Fursaev, Conformal anomalies of CFT’s with boundaries, JHEP 12 (2015) 112 [arXiv:1510.01427] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  12. [12]
    S.N. Solodukhin, Boundary terms of conformal anomaly, Phys. Lett. B 752 (2016) 131 [arXiv:1510.04566] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    K. Jensen, E. Shaverin and A. Yarom, ’t Hooft anomalies and boundaries, JHEP 01 (2018) 085 [arXiv:1710.07299] [INSPIRE].
  14. [14]
    Y. Ferreiros and E. Fradkin, Boson-fermion duality in three dimensions, arXiv:1802.06087 [INSPIRE].
  15. [15]
    P.B. Gilkey, Asymptotic formulae in spectral geometry, CRC Press, Boca Raton (2004).MATHGoogle Scholar
  16. [16]
    K. Kirsten, Spectral functions in mathematics and physics, Chapman & Hall/CRC, Boca Raton, FL (2001).CrossRefMATHGoogle Scholar
  17. [17]
    D.V. Vassilevich, Heat kernel expansion: User’s manual, Phys. Rept. 388 (2003) 279 [hep-th/0306138] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    S. Deser, R. Jackiw and S. Templeton, Topologically Massive Gauge Theories, Annals Phys. 140 (1982) 372 [Erratum ibid. 185 (1988) 406] [INSPIRE].
  19. [19]
    S. Deser, R. Jackiw and S. Templeton, Three-Dimensional Massive Gauge Theories, Phys. Rev. Lett. 48 (1982) 975 [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    J. Zanelli, Chern-Simons Forms in Gravitation Theories, Class. Quant. Grav. 29 (2012) 133001 [arXiv:1208.3353] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    D. Fursaev and D. Vassilevich, Operators, Geometry and Quanta, Theoretical and Mathematical Physics, Springer, Berlin, Germany (2011).Google Scholar
  22. [22]
    D.V. Vassilevich, Induced Chern-Simons action on noncommutative torus, Mod. Phys. Lett. A 22 (2007) 1255 [hep-th/0701017] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    S. Deser, L. Griguolo and D. Seminara, Gauge invariance, finite temperature and parity anomaly in D = 3, Phys. Rev. Lett. 79 (1997) 1976 [hep-th/9705052] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    S. Deser, L. Griguolo and D. Seminara, Effective QED actions: Representations, gauge invariance, anomalies and mass expansions, Phys. Rev. D 57 (1998) 7444 [hep-th/9712066] [INSPIRE].ADSGoogle Scholar
  25. [25]
    T.P. Branson, P.B. Gilkey and D.V. Vassilevich, Vacuum expectation value asymptotics for second order differential operators on manifolds with boundary, J. Math. Phys. 39 (1998) 1040 [Erratum ibid. 41 (2000) 3301] [hep-th/9702178] [INSPIRE].
  26. [26]
    M.A. Gõni and M.A. Valle, Massless Fermions and (2+1)-dimensional Gravitational Effective Action, Phys. Rev. D 34 (1986) 648 [INSPIRE].ADSGoogle Scholar
  27. [27]
    I. Vuorio, Parity Violation and the Effective Gravitational Action in Three-dimensions, Phys. Lett. B 175 (1986) 176 [Erratum ibid. B 181 (1986) 416] [INSPIRE].
  28. [28]
    J.J. van der Bij, R.D. Pisarski and S. Rao, Topological Mass Term for Gravity Induced by Matter, Phys. Lett. B 179 (1986) 87 [INSPIRE].ADSGoogle Scholar
  29. [29]
    S. Ojima, Derivation of Gauge and Gravitational Induced Chern-Simons Terms in Three-dimensions, Prog. Theor. Phys. 81 (1989) 512 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    A. Chodos, R.L. Jaffe, K. Johnson, C.B. Thorn and V.F. Weisskopf, A New Extended Model of Hadrons, Phys. Rev. D 9 (1974) 3471 [INSPIRE].ADSMathSciNetGoogle Scholar
  31. [31]
    A. Chodos, R.L. Jaffe, K. Johnson and C.B. Thorn, Baryon Structure in the Bag Theory, Phys. Rev. D 10 (1974) 2599 [INSPIRE].ADSGoogle Scholar
  32. [32]
    T.P. Branson and P.B. Gilkey, Residues of the eta function for an operator of Dirac type with local boundary conditions, Diff. Geom. Appl. 2 (1992) 249.MathSciNetCrossRefMATHGoogle Scholar
  33. [33]
    H. Lückock, Mixed boundary conditions in quantum field theory, J. Math. Phys. 32 (1991) 1755 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    P. Gilkey and K. Kirsten, Stability theorems for chiral bag boundary conditions, Lett. Math. Phys. 73 (2005) 147 [math/0510152] [INSPIRE].
  35. [35]
    T.P. Branson, P.B. Gilkey, K. Kirsten and D.V. Vassilevich, Heat kernel asymptotics with mixed boundary conditions, Nucl. Phys. B 563 (1999) 603 [hep-th/9906144] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  36. [36]
    A. Kirchberg, K. Kirsten, E.M. Santangelo and A. Wipf, Spectral asymmetry on the ball and asymptotics of the asymmetry kernel, J. Phys. A 39 (2006) 9573 [hep-th/0605067] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  37. [37]
    R. Jackiw and S.Y. Pi, Chern-Simons modification of general relativity, Phys. Rev. D 68 (2003) 104012 [gr-qc/0308071] [INSPIRE].
  38. [38]
    D.T. Son, Is the Composite Fermion a Dirac Particle?, Phys. Rev. X 5 (2015) 031027 [arXiv:1502.03446] [INSPIRE].CrossRefGoogle Scholar
  39. [39]
    M. Visser, Sakharov’s induced gravity: A Modern perspective, Mod. Phys. Lett. A 17 (2002) 977 [gr-qc/0204062] [INSPIRE].
  40. [40]
    M.A. Kurkov and M. Sakellariadou, Spectral Regularisation: Induced Gravity and the Onset of Inflation, JCAP 01 (2014) 035 [arXiv:1311.6979] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    V.N. Marachevsky and D.V. Vassilevich, Chiral anomaly for local boundary conditions, Nucl. Phys. B 677 (2004) 535 [hep-th/0309019] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  42. [42]
    T.P. Branson and P.B. Gilkey, The asymptotics of the Laplacian on a manifold with boundary, Commun. Part. Diff. Eq. 15 (1990) 245.MathSciNetCrossRefMATHGoogle Scholar
  43. [43]
    D.V. Vassilevich, Vector fields on a disk with mixed boundary conditions, J. Math. Phys. 36 (1995) 3174 [gr-qc/9404052] [INSPIRE].
  44. [44]
    I.G. Moss, Anomalies, boundaries and the in-in formalism, J. Phys. A 45 (2012) 374022 [arXiv:1201.5732] [INSPIRE].MathSciNetMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.CMCC, Universidade Federal do ABCSanto AndréBrazil
  2. 2.Dipartimento di Fisica “E. Pancini”Universita di Napoli “Federico II”NapoliItaly
  3. 3.INFN — Sezione di NapoliNapoliItaly
  4. 4.Department of PhysicsTomsk State UniversityTomskRussia

Personalised recommendations