Advertisement

Gluons and gravitons at one loop from ambitwistor strings

  • Yvonne Geyer
  • Ricardo Monteiro
Open Access
Regular Article - Theoretical Physics

Abstract

We present new and explicit formulae for the one-loop integrands of scattering amplitudes in non-supersymmetric gauge theory and gravity, valid for any number of particles. The results exhibit the colour-kinematics duality in gauge theory and the double-copy relation to gravity, in a form that was recently observed in supersymmetric theories. The new formulae are expressed in a particular representation of the loop integrand, with only one quadratic propagator, which arises naturally from the framework of the loop-level scattering equations. The starting point in our work are the expressions based on the scattering equations that were recently derived from ambitwistor string theory. We turn these expressions into explicit formulae depending only on the loop momentum, the external momenta and the external polarisations. These formulae are valid in any number of spacetime dimensions for pure Yang-Mills theory (gluon) and its natural double copy, NS-NS gravity (graviton, dilaton, B-field), and we also present formulae in four spacetime dimensions for pure gravity (graviton). We perform several tests of our results, such as checking gauge invariance and directly matching our four-particle formulae to previously known expressions. While these tests would be elaborate in a Feynman-type representation of the loop integrand, they become straightforward in the representation we use.

Keywords

Scattering Amplitudes Gauge Symmetry 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    Z. Bern, J.J.M. Carrasco and H. Johansson, New relations for gauge-theory amplitudes, Phys. Rev. D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].ADSMathSciNetGoogle Scholar
  2. [2]
    Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative quantum gravity as a double copy of gauge theory, Phys. Rev. Lett. 105 (2010) 061602 [arXiv:1004.0476] [INSPIRE].ADSMathSciNetGoogle Scholar
  3. [3]
    H. Kawai, D.C. Lewellen and S.H.H. Tye, A relation between tree amplitudes of closed and open strings, Nucl. Phys. B 269 (1986) 1 [INSPIRE].ADSMathSciNetGoogle Scholar
  4. [4]
    N.E.J. Bjerrum-Bohr, P.H. Damgaard and P. Vanhove, Minimal basis for gauge theory amplitudes, Phys. Rev. Lett. 103 (2009) 161602 [arXiv:0907.1425] [INSPIRE].ADSMathSciNetGoogle Scholar
  5. [5]
    S. Stieberger, Open & closed vs. pure open string disk amplitudes, arXiv:0907.2211 [INSPIRE].
  6. [6]
    Z. Bern, T. Dennen, Y.-t. Huang and M. Kiermaier, Gravity as the square of gauge theory, Phys. Rev. D 82 (2010) 065003 [arXiv:1004.0693] [INSPIRE].ADSGoogle Scholar
  7. [7]
    B. Feng, R. Huang and Y. Jia, Gauge amplitude identities by on-shell recursion relation in S-matrix program, Phys. Lett. B 695 (2011) 350 [arXiv:1004.3417] [INSPIRE].ADSMathSciNetGoogle Scholar
  8. [8]
    S.H. Henry Tye and Y. Zhang, Dual identities inside the gluon and the graviton scattering amplitudes, JHEP 06 (2010) 071 [Erratum ibid. 04 (2011) 114] [arXiv:1003.1732] [INSPIRE].
  9. [9]
    C.R. Mafra, O. Schlotterer and S. Stieberger, Explicit BCJ numerators from pure spinors, JHEP 07 (2011) 092 [arXiv:1104.5224] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  10. [10]
    R. Monteiro and D. O’Connell, The kinematic algebra from the self-dual sector, JHEP 07 (2011) 007 [arXiv:1105.2565] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  11. [11]
    N.E.J. Bjerrum-Bohr, P.H. Damgaard, R. Monteiro and D. O’Connell, Algebras for amplitudes, JHEP 06 (2012) 061 [arXiv:1203.0944] [INSPIRE].ADSMathSciNetGoogle Scholar
  12. [12]
    S. Oxburgh and C.D. White, BCJ duality and the double copy in the soft limit, JHEP 02 (2013) 127 [arXiv:1210.1110] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  13. [13]
    J. Broedel and L.J. Dixon, Color-kinematics duality and double-copy construction for amplitudes from higher-dimension operators, JHEP 10 (2012) 091 [arXiv:1208.0876] [INSPIRE].ADSGoogle Scholar
  14. [14]
    H. Johansson and A. Ochirov, Pure gravities via color-kinematics duality for fundamental matter, JHEP 11 (2015) 046 [arXiv:1407.4772] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  15. [15]
    H. Johansson and A. Ochirov, Color-kinematics duality for QCD amplitudes, JHEP 01 (2016) 170 [arXiv:1507.00332] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  16. [16]
    M. Chiodaroli, M. Günaydin, H. Johansson and R. Roiban, Scattering amplitudes in \( \mathcal{N} \) = 2 Maxwell-Einstein and Yang-Mills/Einstein supergravity, JHEP 01 (2015) 081 [arXiv:1408.0764] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  17. [17]
    M. Chiodaroli, M. Günaydin, H. Johansson and R. Roiban, Spontaneously broken Yang-Mills-Einstein supergravities as double copies, JHEP 06 (2017) 064 [arXiv:1511.01740] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  18. [18]
    M. Chiodaroli, M. Günaydin, H. Johansson and R. Roiban, Gauged supergravities and spontaneous SUSY breaking from the double copy, arXiv:1710.08796 [INSPIRE].
  19. [19]
    A. Anastasiou et al., Are all supergravity theories Yang-Mills squared?, arXiv:1707.03234 [INSPIRE].
  20. [20]
    C.R. Mafra, O. Schlotterer and S. Stieberger, Complete N-point superstring disk amplitude I. Pure spinor computation, Nucl. Phys. B 873 (2013) 419 [arXiv:1106.2645] [INSPIRE].
  21. [21]
    J. Broedel, O. Schlotterer and S. Stieberger, Polylogarithms, multiple zeta values and superstring amplitudes, Fortsch. Phys. 61 (2013) 812 [arXiv:1304.7267] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  22. [22]
    J.J.M. Carrasco, C.R. Mafra and O. Schlotterer, Abelian Z-theory: NLSM amplitudes and α -corrections from the open string, JHEP 06 (2017) 093 [arXiv:1608.02569] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  23. [23]
    F. Cachazo, S. He and E.Y. Yuan, Scattering equations and matrices: from Einstein to Yang-Mills, DBI and NLSM, JHEP 07 (2015) 149 [arXiv:1412.3479] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  24. [24]
    C. Cheung, C.-H. Shen and C. Wen, Unifying relations for scattering amplitudes, JHEP 02 (2018) 095 [arXiv:1705.03025] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  25. [25]
    R. Monteiro, D. O’Connell and C.D. White, Black holes and the double copy, JHEP 12 (2014) 056 [arXiv:1410.0239] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  26. [26]
    W.D. Goldberger and A.K. Ridgway, Radiation and the classical double copy for color charges, Phys. Rev. D 95 (2017) 125010 [arXiv:1611.03493] [INSPIRE].ADSGoogle Scholar
  27. [27]
    A. Luna et al., Perturbative spacetimes from Yang-Mills theory, JHEP 04 (2017) 069 [arXiv:1611.07508] [INSPIRE].ADSMathSciNetGoogle Scholar
  28. [28]
    A. Luna, I. Nicholson, D. O’Connell and C.D. White, Inelastic black hole scattering from charged scalar amplitudes, arXiv:1711.03901 [INSPIRE].
  29. [29]
    A. Anastasiou et al., Yang-Mills origin of gravitational symmetries, Phys. Rev. Lett. 113 (2014) 231606 [arXiv:1408.4434] [INSPIRE].ADSGoogle Scholar
  30. [30]
    G. Cardoso, S. Nagy and S. Nampuri, Multi-centered \( \mathcal{N} \) = 2 BPS black holes: a double copy description, JHEP 04 (2017) 037 [arXiv:1611.04409] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  31. [31]
    T. Adamo, E. Casali, L. Mason and S. Nekovar, Scattering on plane waves and the double copy, Class. Quant. Grav. 35 (2018) 015004 [arXiv:1706.08925] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  32. [32]
    T. Adamo, E. Casali, L. Mason and S. Nekovar, Amplitudes on plane waves from ambitwistor strings, JHEP 11 (2017) 160 [arXiv:1708.09249] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  33. [33]
    J.J. Carrasco and H. Johansson, Five-point amplitudes in N = 4 Super-Yang-Mills theory and N = 8 supergravity, Phys. Rev. D 85 (2012) 025006 [arXiv:1106.4711] [INSPIRE].ADSGoogle Scholar
  34. [34]
    Z. Bern et al., Simplifying multiloop integrands and ultraviolet divergences of gauge theory and gravity amplitudes, Phys. Rev. D 85 (2012) 105014 [arXiv:1201.5366] [INSPIRE].ADSGoogle Scholar
  35. [35]
    Z. Bern, S. Davies, T. Dennen and Y.-t. Huang, Absence of three-loop four-point divergences in N = 4 supergravity, Phys. Rev. Lett. 108 (2012) 201301 [arXiv:1202.3423] [INSPIRE].ADSGoogle Scholar
  36. [36]
    Z. Bern, S. Davies and T. Dennen, The ultraviolet structure of half-maximal supergravity with matter multiplets at two and three loops, Phys. Rev. D 88 (2013) 065007 [arXiv:1305.4876] [INSPIRE].ADSGoogle Scholar
  37. [37]
    Z. Bern et al., Ultraviolet properties of N = 4 supergravity at four loops, Phys. Rev. Lett. 111 (2013) 231302 [arXiv:1309.2498] [INSPIRE].ADSGoogle Scholar
  38. [38]
    Z. Bern, S. Davies and T. Dennen, Enhanced ultraviolet cancellations in \( \mathcal{N} \) = 5 supergravity at four loops, Phys. Rev. D 90 (2014) 105011 [arXiv:1409.3089] [INSPIRE].ADSGoogle Scholar
  39. [39]
    C.R. Mafra and O. Schlotterer, Two-loop five-point amplitudes of super Yang-Mills and supergravity in pure spinor superspace, JHEP 10 (2015) 124 [arXiv:1505.02746] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  40. [40]
    H. Johansson, G. Kälin and G. Mogull, Two-loop supersymmetric QCD and half-maximal supergravity amplitudes, JHEP 09 (2017) 019 [arXiv:1706.09381] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  41. [41]
    R.H. Boels, B.A. Kniehl, O.V. Tarasov and G. Yang, Color-kinematic duality for form factors, JHEP 02 (2013) 063 [arXiv:1211.7028] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  42. [42]
    G. Yang, Color-kinematics duality and Sudakov form factor at five loops for N = 4 supersymmetric Yang-Mills theory, Phys. Rev. Lett. 117 (2016) 271602 [arXiv:1610.02394] [INSPIRE].ADSMathSciNetGoogle Scholar
  43. [43]
    R.H. Boels and R.S. Isermann, New relations for scattering amplitudes in Yang-Mills theory at loop level, Phys. Rev. D 85 (2012) 021701 [arXiv:1109.5888] [INSPIRE].ADSGoogle Scholar
  44. [44]
    R.H. Boels and R.S. Isermann, Yang-Mills amplitude relations at loop level from non-adjacent BCFW shifts, JHEP 03 (2012) 051 [arXiv:1110.4462] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  45. [45]
    Y.-J. Du and H. Lüo, On general BCJ relation at one-loop level in Yang-Mills theory, JHEP 01 (2013) 129 [arXiv:1207.4549] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  46. [46]
    C.R. Mafra and O. Schlotterer, The structure of n-point one-loop open superstring amplitudes, JHEP 08 (2014) 099 [arXiv:1203.6215] [INSPIRE].ADSGoogle Scholar
  47. [47]
    R.H. Boels, R.S. Isermann, R. Monteiro and D. O’Connell, Colour-kinematics duality for one-loop rational amplitudes, JHEP 04 (2013) 107 [arXiv:1301.4165] [INSPIRE].ADSMathSciNetGoogle Scholar
  48. [48]
    N.E.J. Bjerrum-Bohr, T. Dennen, R. Monteiro and D. O’Connell, Integrand oxidation and one-loop colour-dual numerators in N = 4 gauge theory, JHEP 07 (2013) 092 [arXiv:1303.2913] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  49. [49]
    Z. Bern et al., Color-kinematics duality for pure Yang-Mills and gravity at one and two loops, Phys. Rev. D 92 (2015) 045041 [arXiv:1303.6605] [INSPIRE].ADSMathSciNetGoogle Scholar
  50. [50]
    C.R. Mafra and O. Schlotterer, Towards one-loop SYM amplitudes from the pure spinor BRST cohomology, Fortsch. Phys. 63 (2015) 105 [arXiv:1410.0668] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  51. [51]
    S. He, R. Monteiro and O. Schlotterer, String-inspired BCJ numerators for one-loop MHV amplitudes, JHEP 01 (2016) 171 [arXiv:1507.06288] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  52. [52]
    A. Primo and W.J. Torres Bobadilla, BCJ identities and d-dimensional generalized unitarity, JHEP 04 (2016) 125 [arXiv:1602.03161] [INSPIRE].ADSGoogle Scholar
  53. [53]
    J.L. Jurado, G. Rodrigo and W.J. Torres Bobadilla, From Jacobi off-shell currents to integral relations, JHEP 12 (2017) 122 [arXiv:1710.11010] [INSPIRE].ADSGoogle Scholar
  54. [54]
    P. Tourkine and P. Vanhove, Higher-loop amplitude monodromy relations in string and gauge theory, Phys. Rev. Lett. 117 (2016) 211601 [arXiv:1608.01665] [INSPIRE].ADSGoogle Scholar
  55. [55]
    S. Hohenegger and S. Stieberger, Monodromy relations in higher-loop string amplitudes, Nucl. Phys. B 925 (2017) 63 [arXiv:1702.04963] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  56. [56]
    A. Ochirov, P. Tourkine and P. Vanhove, One-loop monodromy relations on single cuts, JHEP 10 (2017) 105 [arXiv:1707.05775] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  57. [57]
    Z. Bern, J.J. Carrasco, W.-M. Chen, H. Johansson and R. Roiban, Gravity amplitudes as generalized double copies of gauge-theory amplitudes, Phys. Rev. Lett. 118 (2017) 181602 [arXiv:1701.02519] [INSPIRE].ADSGoogle Scholar
  58. [58]
    Z. Bern et al., Five-loop four-point integrand of N = 8 supergravity as a generalized double copy, Phys. Rev. D 96 (2017) 126012 [arXiv:1708.06807] [INSPIRE].ADSGoogle Scholar
  59. [59]
    E.Y. Yuan, Virtual color-kinematics duality: 6-pt 1-Loop MHV amplitudes, JHEP 05 (2013) 070 [arXiv:1210.1816] [INSPIRE].ADSGoogle Scholar
  60. [60]
    Z. Bern, S. Davies and J. Nohle, Double-copy constructions and unitarity cuts, Phys. Rev. D 93 (2016) 105015 [arXiv:1510.03448] [INSPIRE].ADSMathSciNetGoogle Scholar
  61. [61]
    G. Mogull and D. O’Connell, Overcoming obstacles to colour-kinematics duality at two loops, JHEP 12 (2015) 135 [arXiv:1511.06652] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  62. [62]
    M. Berg, I. Buchberger and O. Schlotterer, String-motivated one-loop amplitudes in gauge theories with half-maximal supersymmetry, JHEP 07 (2017) 138 [arXiv:1611.03459] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  63. [63]
    F. Cachazo, S. He and E.Y. Yuan, Scattering equations and Kawai-Lewellen-Tye orthogonality, Phys. Rev. D 90 (2014) 065001 [arXiv:1306.6575] [INSPIRE].ADSGoogle Scholar
  64. [64]
    F. Cachazo, S. He and E.Y. Yuan, Scattering of massless particles in arbitrary dimensions, Phys. Rev. Lett. 113 (2014) 171601 [arXiv:1307.2199] [INSPIRE].ADSGoogle Scholar
  65. [65]
    F. Cachazo, S. He and E.Y. Yuan, Scattering of massless particles: scalars, gluons and gravitons, JHEP 07 (2014) 033 [arXiv:1309.0885] [INSPIRE].ADSGoogle Scholar
  66. [66]
    L. Mason and D. Skinner, Ambitwistor strings and the scattering equations, JHEP 07 (2014) 048 [arXiv:1311.2564] [INSPIRE].ADSGoogle Scholar
  67. [67]
    Y. Geyer, A.E. Lipstein and L.J. Mason, Ambitwistor strings in four dimensions, Phys. Rev. Lett. 113 (2014) 081602 [arXiv:1404.6219] [INSPIRE].ADSGoogle Scholar
  68. [68]
    T. Adamo, E. Casali and D. Skinner, A worldsheet theory for supergravity, JHEP 02 (2015) 116 [arXiv:1409.5656] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  69. [69]
    K. Ohmori, Worldsheet geometries of ambitwistor string, JHEP 06 (2015) 075 [arXiv:1504.02675] [INSPIRE].ADSMathSciNetGoogle Scholar
  70. [70]
    E. Casali, Y. Geyer, L. Mason, R. Monteiro and K.A. Roehrig, New ambitwistor string theories, JHEP 11 (2015) 038 [arXiv:1506.08771] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  71. [71]
    T. Adamo, R. Monteiro and M.F. Paulos, Space-time CFTs from the Riemann sphere, JHEP 08 (2017) 067 [arXiv:1703.04589] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  72. [72]
    E. Casali and P. Tourkine, On the null origin of the ambitwistor string, JHEP 11 (2016) 036 [arXiv:1606.05636] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  73. [73]
    E. Casali, Y. Herfray and P. Tourkine, The complex null string, Galilean conformal algebra and scattering equations, JHEP 10 (2017) 164 [arXiv:1707.09900] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  74. [74]
    E. Casali and P. Tourkine, Winding modes of tensionful ambitwistor strings, arXiv:1710.01241 [INSPIRE].
  75. [75]
    T. Azevedo and O.T. Engelund, Ambitwistor formulations of R 2 gravity and (DF) 2 gauge theories, JHEP 11 (2017) 052 [arXiv:1707.02192] [INSPIRE].ADSMATHGoogle Scholar
  76. [76]
    T. Azevedo and R.L. Jusinskas, Connecting the ambitwistor and the sectorized heterotic strings, JHEP 10 (2017) 216 [arXiv:1707.08840] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  77. [77]
    T. Adamo, E. Casali and D. Skinner, Ambitwistor strings and the scattering equations at one loop, JHEP 04 (2014) 104 [arXiv:1312.3828] [INSPIRE].ADSGoogle Scholar
  78. [78]
    E. Casali and P. Tourkine, Infrared behaviour of the one-loop scattering equations and supergravity integrands, JHEP 04 (2015) 013 [arXiv:1412.3787] [INSPIRE].MathSciNetMATHGoogle Scholar
  79. [79]
    T. Adamo and E. Casali, Scattering equations, supergravity integrands and pure spinors, JHEP 05 (2015) 120 [arXiv:1502.06826] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  80. [80]
    Y. Geyer, L. Mason, R. Monteiro and P. Tourkine, Loop integrands for scattering amplitudes from the Riemann sphere, Phys. Rev. Lett. 115 (2015) 121603 [arXiv:1507.00321] [INSPIRE].ADSGoogle Scholar
  81. [81]
    Y. Geyer, L. Mason, R. Monteiro and P. Tourkine, One-loop amplitudes on the Riemann sphere, JHEP 03 (2016) 114 [arXiv:1511.06315] [INSPIRE].ADSMATHGoogle Scholar
  82. [82]
    Y. Geyer, L. Mason, R. Monteiro and P. Tourkine, Two-loop scattering amplitudes from the Riemann sphere, Phys. Rev. D 94 (2016) 125029 [arXiv:1607.08887] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  83. [83]
    K.A. Roehrig and D. Skinner, A gluing operator for the ambitwistor string, JHEP 01 (2018) 069 [arXiv:1709.03262] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  84. [84]
    H. Gomez, Λ scattering equations, JHEP 06 (2016) 101 [arXiv:1604.05373] [INSPIRE].ADSGoogle Scholar
  85. [85]
    C. Cardona and H. Gomez, Elliptic scattering equations, JHEP 06 (2016) 094 [arXiv:1605.01446] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  86. [86]
    C. Cardona and H. Gomez, CHY-graphs on a torus, JHEP 10 (2016) 116 [arXiv:1607.01871] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  87. [87]
    H. Gomez, S. Mizera and G. Zhang, CHY loop integrands from holomorphic forms, JHEP 03 (2017) 092 [arXiv:1612.06854] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  88. [88]
    S. He and E.Y. Yuan, One-loop scattering equations and amplitudes from forward limit, Phys. Rev. D 92 (2015) 105004 [arXiv:1508.06027] [INSPIRE].ADSMathSciNetGoogle Scholar
  89. [89]
    F. Cachazo, S. He and E.Y. Yuan, One-loop corrections from higher dimensional tree amplitudes, JHEP 08 (2016) 008 [arXiv:1512.05001] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  90. [90]
    C. Baadsgaard et al., New Representations of the Perturbative S-matrix, Phys. Rev. Lett. 116 (2016) 061601 [arXiv:1509.02169] [INSPIRE].ADSMATHGoogle Scholar
  91. [91]
    R. Huang, Q. Jin, J. Rao, K. Zhou and B. Feng, The Q-cut representation of one-loop integrands and unitarity cut method, JHEP 03 (2016) 057 [arXiv:1512.02860] [INSPIRE].ADSGoogle Scholar
  92. [92]
    B. Feng, CHY-construction of planar loop integrands of cubic scalar theory, JHEP 05 (2016) 061 [arXiv:1601.05864] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  93. [93]
    R. Monteiro and D. O’Connell, The kinematic algebras from the scattering equations, JHEP 03 (2014) 110 [arXiv:1311.1151] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  94. [94]
    S.G. Naculich, Scattering equations and BCJ relations for gauge and gravitational amplitudes with massive scalar particles, JHEP 09 (2014) 029 [arXiv:1407.7836] [INSPIRE].ADSGoogle Scholar
  95. [95]
    R. Huang, J. Rao, B. Feng and Y.-H. He, An algebraic approach to the scattering equations, JHEP 12 (2015) 056 [arXiv:1509.04483] [INSPIRE].ADSMathSciNetGoogle Scholar
  96. [96]
    N.E.J. Bjerrum-Bohr, J.L. Bourjaily, P.H. Damgaard and B. Feng, Manifesting color-kinematics duality in the scattering equation formalism, JHEP 09 (2016) 094 [arXiv:1608.00006] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  97. [97]
    S. Mizera, Combinatorics and topology of Kawai-Lewellen-Tye relations, JHEP 08 (2017) 097 [arXiv:1706.08527] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  98. [98]
    S. Mizera, Scattering amplitudes from intersection theory, arXiv:1711.00469 [INSPIRE].
  99. [99]
    E. Witten, Perturbative gauge theory as a string theory in twistor space, Commun. Math. Phys. 252 (2004) 189 [hep-th/0312171] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  100. [100]
    R. Roiban, M. Spradlin and A. Volovich, On the tree level S matrix of Yang-Mills theory, Phys. Rev. D 70 (2004) 026009 [hep-th/0403190] [INSPIRE].ADSMathSciNetGoogle Scholar
  101. [101]
    F. Cachazo, Fundamental BCJ relation in N = 4 SYM from the connected formulation, arXiv:1206.5970 [INSPIRE].
  102. [102]
    F. Cachazo and Y. Geyer, A ‘twistor string’ inspired formula for tree-level scattering amplitudes in N = 8 SUGRA, arXiv:1206.6511 [INSPIRE].
  103. [103]
    C.-H. Fu, Y.-J. Du, R. Huang and B. Feng, Expansion of Einstein-Yang-Mills amplitude, JHEP 09 (2017) 021 [arXiv:1702.08158] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  104. [104]
    S. He and O. Schlotterer, New relations for gauge-theory and gravity amplitudes at loop level, Phys. Rev. Lett. 118 (2017) 161601 [arXiv:1612.00417] [INSPIRE].ADSGoogle Scholar
  105. [105]
    S. He, O. Schlotterer and Y. Zhang, New BCJ representations for one-loop amplitudes in gauge theories and gravity, arXiv:1706.00640 [INSPIRE].
  106. [106]
    D.J. Gross and P.F. Mende, The high-energy behavior of string scattering amplitudes, Phys. Lett. B 197 (1987) 129 [INSPIRE].ADSMathSciNetGoogle Scholar
  107. [107]
    L. Dolan and P. Goddard, Proof of the formula of Cachazo, He and Yuan for Yang-Mills tree amplitudes in arbitrary dimension, JHEP 05 (2014) 010 [arXiv:1311.5200] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  108. [108]
    F. Cachazo, S. He and E.Y. Yuan, Einstein- Yang-Mills scattering amplitudes from scattering equations, JHEP 01 (2015) 121 [arXiv:1409.8256] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  109. [109]
    N.E.J. Bjerrum-Bohr, P.H. Damgaard, T. Sondergaard and P. Vanhove, The momentum kernel of gauge and gravity theories, JHEP 01 (2011) 001 [arXiv:1010.3933] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  110. [110]
    C.-H. Fu, Y.-J. Du and B. Feng, An algebraic approach to BCJ numerators, JHEP 03 (2013) 050 [arXiv:1212.6168] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  111. [111]
    V. Del Duca, L.J. Dixon and F. Maltoni, New color decompositions for gauge amplitudes at tree and loop level, Nucl. Phys. B 571 (2000) 51 [hep-ph/9910563] [INSPIRE].
  112. [112]
    M. Chiodaroli, M. Günaydin, H. Johansson and R. Roiban, Explicit formulae for Yang-Mills-Einstein amplitudes from the double copy, JHEP 07 (2017) 002 [arXiv:1703.00421] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  113. [113]
    N. Berkovits, Infinite tension limit of the pure spinor superstring, JHEP 03 (2014) 017 [arXiv:1311.4156] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  114. [114]
    P. Tourkine and P. Vanhove, One-loop four-graviton amplitudes in \( \mathcal{N} \) = 4 supergravity models, Phys. Rev. D 87 (2013) 045001 [arXiv:1208.1255] [INSPIRE].ADSGoogle Scholar
  115. [115]
    H. Gomez, Quadratic Feynman loop integrands from massless scattering equations, Phys. Rev. D 95 (2017) 106006 [arXiv:1703.04714] [INSPIRE].ADSGoogle Scholar
  116. [116]
    H. Gomez, C. Lopez-Arcos and P. Talavera, One-loop Parke-Taylor factors for quadratic propagators from massless scattering equations, JHEP 10 (2017) 175 [arXiv:1707.08584] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  117. [117]
    T. Wang, G. Chen, Y.-K.E. Cheung and F. Xu, A differential operator for integrating one-loop scattering equations, JHEP 01 (2017) 028 [arXiv:1609.07621] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  118. [118]
    G. Chen and T. Wang, BCJ numerators from differential operator of multidimensional residue, arXiv:1709.08503 [INSPIRE].
  119. [119]
    C.S. Lam and Y.-P. Yao, Evaluation of the Cachazo-He-Yuan gauge amplitude, Phys. Rev. D 93 (2016) 105008 [arXiv:1602.06419] [INSPIRE].ADSGoogle Scholar
  120. [120]
    Y. Geyer and R. Monteiro, work in progress.Google Scholar
  121. [121]
    Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys. B 425 (1994) 217 [hep-ph/9403226] [INSPIRE].
  122. [122]
    Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys. B 435 (1995) 59 [hep-ph/9409265] [INSPIRE].
  123. [123]
    R. Britto, F. Cachazo and B. Feng, Generalized unitarity and one-loop amplitudes in N = 4 Super-Yang-Mills, Nucl. Phys. B 725 (2005) 275 [hep-th/0412103] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  124. [124]
    R.K. Ellis and G. Zanderighi, Scalar one-loop integrals for QCD, JHEP 02 (2008) 002 [arXiv:0712.1851] [INSPIRE].ADSGoogle Scholar
  125. [125]
    B.U.W. Schwab and A. Volovich, Subleading soft theorem in arbitrary dimensions from scattering equations, Phys. Rev. Lett. 113 (2014) 101601 [arXiv:1404.7749] [INSPIRE].ADSGoogle Scholar
  126. [126]
    Y. Geyer, A.E. Lipstein and L. Mason, Ambitwistor strings at null infinity and (subleading) soft limits, Class. Quant. Grav. 32 (2015) 055003 [arXiv:1406.1462] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  127. [127]
    T. Adamo, E. Casali and D. Skinner, Perturbative gravity at null infinity, Class. Quant. Grav. 31 (2014) 225008 [arXiv:1405.5122] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  128. [128]
    T. Adamo and E. Casali, Perturbative gauge theory at null infinity, Phys. Rev. D 91 (2015) 125022 [arXiv:1504.02304] [INSPIRE].ADSMathSciNetGoogle Scholar
  129. [129]
    A.E. Lipstein, Soft theorems from conformal field theory, JHEP 06 (2015) 166 [arXiv:1504.01364] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  130. [130]
    F. Cachazo and A. Strominger, Evidence for a new soft graviton theorem, arXiv:1404.4091 [INSPIRE].
  131. [131]
    E. Casali, Soft sub-leading divergences in Yang-Mills amplitudes, JHEP 08 (2014) 077 [arXiv:1404.5551] [INSPIRE].ADSGoogle Scholar
  132. [132]
    J.A. Farrow and A.E. Lipstein, From 4d ambitwistor strings to on shell diagrams and back, JHEP 07 (2017) 114 [arXiv:1705.07087] [INSPIRE].ADSMathSciNetMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.School of Natural SciencesInstitute for Advanced StudyPrincetonU.S.A.
  2. 2.Centre for Research in String TheoryQueen Mary University of LondonLondonU.K.
  3. 3.Kavli Institute for Theoretical PhysicsUniversity of California Santa BarbaraSanta BarbaraU.S.A.

Personalised recommendations